Ji Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients, 2022, 14, 700.	4.1	28
2	Generation of Adenovirus for In Vitro and In Vivo Studies of Hepatocytes. Methods in Molecular Biology, 2022, 2455, 343-358.	0.9	0
3	Chromatin Immunoprecipitation Assay in Primary Mouse Hepatocytes and Mouse Liver. Methods in Molecular Biology, 2022, 2455, 149-161.	0.9	0
4	Insulin Prevents Hypercholesterolemia by Suppressing 12α-Hydroxylated Bile Acids. Circulation, 2022, 145, 969-982.	1.6	14
5	FoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance. Cell Reports, 2021, 34, 108893.	6.4	14
6	TAZ inhibits glucocorticoid receptor and coordinates hepatic glucose homeostasis in normal physiological states. ELife, 2021, 10, .	6.0	6
7	Inhibition of XBP1s ubiquitination enhances its protein stability and improves glucose homeostasis. Metabolism: Clinical and Experimental, 2020, 105, 154046.	3.4	12
8	Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Molecular Cancer, 2020, 19, 130.	19.2	140
9	Donor myeloid derived suppressor cells (MDSCs) prolong allogeneic cardiac graft survival through programming of recipient myeloid cells in vivo. Scientific Reports, 2020, 10, 14249.	3.3	4
10	Beta-Catenin Causes Adrenal Hyperplasia by Blocking Zonal Transdifferentiation. Cell Reports, 2020, 31, 107524.	6.4	47
11	β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nature Communications, 2020, 11, 1680.	12.8	31
12	The Human Novel Gene LNC-HC Inhibits Hepatocellular Carcinoma Cell Proliferation by Sequestering hsa-miR-183-5p. Molecular Therapy - Nucleic Acids, 2020, 20, 468-479.	5.1	21
13	Acute suppression of insulin resistance-associated hepatic miR-29 in vivo improves glycemic control in adult mice. Physiological Genomics, 2019, 51, 379-389.	2.3	33
14	Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metabolism, 2019, 30, 1141-1151.e5.	16.2	215
15	Yin Yang 1 protein ameliorates diabetic nephropathy pathology through transcriptional repression of TGFβ1. Science Translational Medicine, 2019, 11, .	12.4	37
16	Fructose and glucose can regulate mammalian target of rapamycin complex 1 and lipogenic gene expression via distinct pathways. Journal of Biological Chemistry, 2018, 293, 2006-2014.	3.4	12
17	Disruption of the <i>lgf2</i> gene alters hepatic lipid homeostasis and gene expression in the newborn mouse. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E735-E744.	3.5	13
18	Inactivating hepatic follistatin alleviates hyperglycemia. Nature Medicine, 2018, 24, 1058-1069.	30.7	71

Ji Μιαο

#	Article	IF	CITATIONS
19	YAP suppresses gluconeogenic gene expression through PGC1α. Hepatology, 2017, 66, 2029-2041.	7.3	47
20	Effect of Leptin Replacement on PCSK9 in ob/ob Mice and Female Lipodystrophic Patients. Endocrinology, 2016, 157, 1421-1429.	2.8	15
21	Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature, 2016, 538, 350-355.	27.8	229
22	Insulin Dissociates the Effects of Liver X Receptor on Lipogenesis, Endoplasmic Reticulum Stress, and Inflammation. Journal of Biological Chemistry, 2016, 291, 1115-1122.	3.4	16
23	Role of Insulin in the Regulation of Proprotein Convertase Subtilisin/Kexin Type 9. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1589-1596.	2.4	74
24	Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nature Communications, 2015, 6, 6498.	12.8	291
25	MicroRNA-29 Fine-tunes the Expression of Key FOXA2-Activated Lipid Metabolism Genes and Is Dysregulated in Animal Models of Insulin Resistance and Diabetes. Diabetes, 2014, 63, 3141-3148.	0.6	105
26	Hepatic insulin receptor deficiency impairs the SREBP-2 response to feeding and statins. Journal of Lipid Research, 2014, 55, 659-667.	4.2	37
27	Hepatic Insulin Signaling Is Required for Obesity-Dependent Expression of SREBP-1c mRNA but Not for Feeding-Dependent Expression. Cell Metabolism, 2012, 15, 873-884.	16.2	172
28	Ligand-Dependent Regulation of the Activity of the Orphan Nuclear Receptor, Small Heterodimer Partner (SHP), in the Repression of Bile Acid Biosynthetic <i>CYP7A1</i> and <i>CYP8B1</i> Genes. Molecular Endocrinology, 2011, 25, 1159-1169.	3.7	33
29	SIRT1 Deacetylates and Inhibits SREBP-1C Activity in Regulation of Hepatic Lipid Metabolism*. Journal of Biological Chemistry, 2010, 285, 33959-33970.	3.4	442
30	A Pathway Involving Farnesoid X Receptor and Small Heterodimer Partner Positively Regulates Hepatic Sirtuin 1 Levels via MicroRNA-34a Inhibition. Journal of Biological Chemistry, 2010, 285, 12604-12611.	3.4	224
31	Functional Specificities of Brm and Brg-1 Swi/Snf ATPases in the Feedback Regulation of Hepatic Bile Acid Biosynthesis. Molecular and Cellular Biology, 2009, 29, 6170-6181.	2.3	38
32	Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin–proteasomal degradation. Genes and Development, 2009, 23, 986-996.	5.9	109
33	FXR Acetylation Is Normally Dynamically Regulated by p300 and SIRT1 but Constitutively Elevated in Metabolic Disease States. Cell Metabolism, 2009, 10, 392-404.	16.2	278
34	Coordinated Recruitment of Histone Methyltransferase G9a and Other Chromatin-Modifying Enzymes in SHP-Mediated Regulation of Hepatic Bile Acid Metabolism. Molecular and Cellular Biology, 2007, 27, 1407-1424.	2.3	90
35	Functional Inhibitory Cross-talk between Constitutive Androstane Receptor and Hepatic Nuclear Factor-4 in Hepatic Lipid/Glucose Metabolism Is Mediated by Competition for Binding to the DR1 Motif and to the Common Coactivators, GRIP-1 and PGC-11±. Journal of Biological Chemistry, 2006, 281, 14537-14546.	3.4	170
36	Role of an mSin3A-Swi/Snf Chromatin Remodeling Complex in the Feedback Repression of Bile Acid Biosynthesis by SHP. Molecular and Cellular Biology, 2004, 24, 7707-7719.	2.3	99

	Jι Μιαο			
#	ARTICLE	IF	CITATIONS	
 37	Differential Regulation of Rat and HumanCYP7A1by the Nuclear Oxysterol Receptor Liver X Receptor-α. Molecular Endocrinology, 2003, 17, 386-394.	3.7	171	