
Michael Keidar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reinforcement Learning With Safe Exploration for Adaptive Plasma Cancer Treatment. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 482-492.	2.7	3
2	Selfâ€Adaptive Plasma Chemistry and Intelligent Plasma Medicine. Advanced Intelligent Systems, 2022, 4, 2100112.	3.3	12
3	Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 127-157.	2.7	64
4	Improving Seed Germination by Cold Atmospheric Plasma. Plasma, 2022, 5, 98-110.	0.7	13
5	BCL2A1 regulates Canady Helios Cold Plasma-induced cell death in triple-negative breast cancer. Scientific Reports, 2022, 12, 4038.	1.6	9
6	Controlling the breakdown delay time in pulsed gas discharge. Plasma Sources Science and Technology, 2022, 31, 03LT01.	1.3	1
7	Cold Plasma Discharge Tube Enhances Antitumoral Efficacy of Temozolomide. ACS Applied Bio Materials, 2022, 5, 1610-1623.	2.3	11
8	The Granger Causal Effects of Canady Helios Cold Plasma on the Inhibition of Breast Cancer Cell Proliferation. Applied Sciences (Switzerland), 2022, 12, 4622.	1.3	1
9	Theranostic Potential of Adaptive Cold Atmospheric Plasma with Temozolomide to Checkmate Glioblastoma: An In Vitro Study. Cancers, 2022, 14, 3116.	1.7	6
10	Effect of The Distance Between the First and Second Stages on the Performance of the Micro-Cathode Arc Thruster with Mpd Second Stage. , 2022, , .		0
11	Canady Cold Helios Plasma Reduces Soft Tissue Sarcoma Viability by Inhibiting Proliferation, Disrupting Cell Cycle, and Inducing Apoptosis: A Preliminary Report. Molecules, 2022, 27, 4168.	1.7	4
12	Preclinical Cold Atmospheric Plasma Cancer Treatment. Cancers, 2022, 14, 3461.	1.7	15
13	Artificial Intelligence without Digital Computers: Programming Matter at a Molecular Scale. Advanced Intelligent Systems, 2022, 4, .	3.3	5
14	Terminator Double Layer Explorer (TerDLE): Examining the Near-Moon Lunar Wake. Planetary Science Journal, 2021, 2, 61.	1.5	0
15	A map of control for cold atmospheric plasma jets: From physical mechanisms to optimizations. Applied Physics Reviews, 2021, 8, .	5.5	46
16	Plasma-Treated Solutions (PTS) in Cancer Therapy. Cancers, 2021, 13, 1737.	1.7	70
17	Effect of Plasma Ignition Delay on Ion Velocities in a Two-Stage MPD Thruster With Pulsing Magnetic Field. , 2021, , .		1
18	On the selective killing of cold atmospheric plasma cancer treatment: Status and beyond. Plasma Processes and Polymers, 2021, 18, 2100020.	1.6	13

#	Article	IF	CITATIONS
19	Non-thermal plasma multi-jet platform based on a flexible matrix. Review of Scientific Instruments, 2021, 92, 083505.	0.6	4
20	Cold Atmospheric Plasma Cancer Treatment, a Critical Review. Applied Sciences (Switzerland), 2021, 11, 7757.	1.3	22
21	Fundamentals and Applications of Atmospheric Pressure Plasmas. Journal of Applied Physics, 2021, 130, .	1.1	14
22	Canady Helios Cold Plasma Induces Breast Cancer Cell Death by Oxidation of Histone mRNA. International Journal of Molecular Sciences, 2021, 22, 9578.	1.8	13
23	Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines, 2021, 9, 1259.	1.4	20
24	Analysis of ionization in air-breathing plasma thruster. Physics of Plasmas, 2021, 28, .	0.7	13
25	In Vitro and In Vivo Enhancement of Temozolomide Effect in Human Glioblastoma by Non-Invasive Application of Cold Atmospheric Plasma. Cancers, 2021, 13, 4485.	1.7	26
26	Combination drug delivery using cold atmospheric plasma technology. , 2021, , 393-423.		0
27	Discharge characteristics of two-stage micro-cathode arc MPD thrusters with a permanent magnet and a pulsed magnetic field. Journal Physics D: Applied Physics, 2021, 54, 015201.	1.3	8
28	A comparative study of cold atmospheric plasma treatment, chemical versus physical strategy. Journal Physics D: Applied Physics, 2021, 54, 095207.	1.3	15
29	Anti-Melanoma Capability of Contactless Cold Atmospheric Plasma Treatment. International Journal of Molecular Sciences, 2021, 22, 11728.	1.8	5
30	The Periodic Cellular Behaviors Under the Physical Effects of Plasma Medicine. , 2021, , .		0
31	Quasi-steady testing approach for high-power Hall thrusters. Journal of Applied Physics, 2021, 130, .	1.1	1
32	The activation of cancer cells by a nanosecond-pulsed magnetic field generator. Journal Physics D: Applied Physics, 2020, 53, 125401.	1.3	11
33	A Physically Triggered Cell Death via Transbarrier Cold Atmospheric Plasma Cancer Treatment. ACS Applied Materials & Interfaces, 2020, 12, 34548-34563.	4.0	47
34	Energy considerations regarding pulsed arc production of nanomaterials. Journal of Applied Physics, 2020, 128, 033303.	1.1	4
35	Comparative Study of Cancer Treatment Potential Effects of Tumor-Treating Fields and Cold Atmospheric Plasma. Plasma Medicine, 2020, 10, 45-59.	0.2	4
36	Sensitization of glioblastoma cells to temozolomide by a helium gas discharge tube. Physics of Plasmas, 2020, 27, .	0.7	13

#	Article	IF	CITATIONS
37	Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Scientific Reports, 2020, 10, 16495.	1.6	39
38	The anti-glioblastoma effect of cold atmospheric plasma treatment: physical pathway v.s. chemical pathway. Scientific Reports, 2020, 10, 11788.	1.6	30
39	Onset of the magnetized arc and its effect on the momentum of a low-power two-stage pulsed magneto-plasma-dynamic thruster. Physical Review E, 2020, 102, 021203.	0.8	15
40	Cold atmospheric plasma cancer treatment, direct <i>versus</i> indirect approaches. Materials Advances, 2020, 1, 1494-1505.	2.6	37
41	Physics of E × B discharges relevant to plasma propulsion and similar technologies. Physics of Plasmas, 2020, 27, .	0.7	89
42	Introducing adaptive cold atmospheric plasma: The perspective of adaptive cold plasma cancer treatments based on real-time electrochemical impedance spectroscopy. Physics of Plasmas, 2020, 27, .	0.7	26
43	Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration. Materials Science and Engineering C, 2020, 111, 110844.	3.8	22
44	Introduction: Plasma for Cancer Therapy. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 1-13.	0.1	2
45	Current Understanding of Mechanisms in Plasma Cancer Therapy and Recent Advances in Technology. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 271-287.	0.1	1
46	Canady cold plasma conversion system treatment: An effective inhibitor of cell viability in breast cancer molecular subtypes. Clinical Plasma Medicine, 2020, 19-20, 100109.	3.2	9
47	Cold Atmospheric Plasma as a Novel Therapeutic Tool for the Treatment of Brain Cancer. Current Pharmaceutical Design, 2020, 26, 2195-2206.	0.9	13
48	Adaptive Plasma and Machine Learning. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 223-250.	0.1	2
49	Model for deformation of cells from external electric fields at or near resonant frequencies. Biomedical Physics and Engineering Express, 2020, 6, 065022.	0.6	2
50	Cold plasma-based control of the activation of pancreatic adenocarcinoma cells. Journal Physics D: Applied Physics, 2019, 52, 445202.	1.3	13
51	Atmospheric Plasma Meets Cell: Plasma Tailoring by Living Cells. ACS Applied Materials & Interfaces, 2019, 11, 30621-30630.	4.0	25
52	Continuousâ€wave plasmaâ€generated electric field in 3D collagen gel during cold atmospheric plasma treatment. Plasma Processes and Polymers, 2019, 16, 1900129.	1.6	5
53	Interaction between a helium atmospheric plasma jet and targets and dynamics of the interface. Plasma Sources Science and Technology, 2019, 28, 115002.	1.3	27
54	Transcutaneous plasma stress: From soft-matter models to living tissues. Materials Science and Engineering Reports, 2019, 138, 36-59.	14.8	101

#	Article	IF	CITATIONS
55	Micro-propulsion based on vacuum arcs. Journal of Applied Physics, 2019, 125, .	1.1	38
56	Cold atmospheric helium plasma jet in humid air environment. Journal of Applied Physics, 2019, 125, .	1.1	30
57	Mathematical modeling and control for cancer treatment with cold atmospheric plasma jet. Journal Physics D: Applied Physics, 2019, 52, 185202.	1.3	21
58	The impact of radicals in cold atmospheric plasma on the structural modification of gap junction: a reactive molecular dynamics study. International Journal of Smart and Nano Materials, 2019, 10, 144-155.	2.0	21
59	Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radical Biology and Medicine, 2019, 130, 71-81.	1.3	83
60	Cold Plasma with Immunomodulatory Properties Has Significant Anti-Lymphoma Activities in Vitro and In Vivo. Blood, 2019, 134, 5307-5307.	0.6	8
61	Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nature Communications, 2018, 9, 879.	5.8	182
62	Adaptation of Operational Parameters of Cold Atmospheric Plasma for in Vitro Treatment of Cancer Cells. ACS Applied Materials & Interfaces, 2018, 10, 9269-9279.	4.0	67
63	Hall Thrusters With Permanent Magnets: Current Solutions and Perspectives. IEEE Transactions on Plasma Science, 2018, 46, 239-251.	0.6	10
64	Selective Treatment of Pancreatic Cancer Cells by Plasma-Activated Saline Solutions. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 116-120.	2.7	19
65	Guest Editorial Special Issue on Micropropulsion and Cubesats. IEEE Transactions on Plasma Science, 2018, 46, 210-213.	0.6	1
66	Plasmas for Treating Cancer: Opportunities for Adaptive and Self-Adaptive Approaches. Trends in Biotechnology, 2018, 36, 586-593.	4.9	131
67	Guidelines for Using 3-Nitro-L-Tyrosine as an Antidegradation Reagent of H2O2 in the Cold Atmospheric Plasma-Stimulated Solutions. Plasma Medicine, 2018, 8, 121-129.	0.2	5
68	Micro-Sized Cold Atmospheric Plasma Source for Brain and Breast Cancer Treatment. Plasma Medicine, 2018, 8, 203-215.	0.2	22
69	Universality of Micromolar-Level Cell-Based Hydrogen Peroxide Generation during Direct Cold Atmospheric Plasma Treatment. Plasma Medicine, 2018, 8, 335-343.	0.2	9
70	Average electron temperature estimation of streamer discharge in ambient air. Review of Scientific Instruments, 2018, 89, 113502.	0.6	17
71	The Correlation Between the Cytotoxicity of Cold Atmospheric Plasma and the Extracellular H ₂ O ₂ -Scavenging Rate. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 618-623.	2.7	17
72	Explore space using swarms of tiny satellites. Nature, 2018, 562, 185-187.	13.7	111

#	Article	IF	CITATIONS
73	The Canady Helios Cold Plasma Scalpel Significantly Decreases Viability in Malignant Solid Tumor Cells in a Dose-Dependent Manner. Plasma, 2018, 1, 177-188.	0.7	17
74	Treatment of Triple-Negative Breast Cancer Cells with the Canady Cold Plasma Conversion System: Preliminary Results. Plasma, 2018, 1, 218-228.	0.7	15
75	The Cell Activation Phenomena in the Cold Atmospheric Plasma Cancer Treatment. Scientific Reports, 2018, 8, 15418.	1.6	67
76	A New Cold Plasma Jet: Performance Evaluation of Cold Plasma, Hybrid Plasma and Argon Plasma Coagulation. Plasma, 2018, 1, 189-200.	0.7	10
77	Optimization of discharge triggering in micro-cathode vacuum arc thruster for CubeSats. Plasma Sources Science and Technology, 2018, 27, 074001.	1.3	30
78	A prospectus on innovations in the plasma treatment of cancer. Physics of Plasmas, 2018, 25, .	0.7	61
79	The Application of the Cold Atmospheric Plasma-Activated Solutions in Cancer Treatment. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 769-775.	0.9	45
80	The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. Journal Physics D: Applied Physics, 2017, 50, 055401.	1.3	77
81	Discharge ignition in the micro-cathode arc thruster. Journal of Applied Physics, 2017, 121, .	1.1	28
82	Cold atmospheric plasma discharged in water and its potential use in cancer therapy. Journal Physics D: Applied Physics, 2017, 50, 015208.	1.3	47
83	The cutting mechanism of the electrosurgical scalpel. Journal Physics D: Applied Physics, 2017, 50, 025401.	1.3	13
84	The Strong Cell-based Hydrogen Peroxide Generation Triggered by Cold Atmospheric Plasma. Scientific Reports, 2017, 7, 10831.	1.6	56
85	In vitro Demonstration of Cancer Inhibiting Properties from Stratified Self-Organized Plasma-Liquid Interface. Scientific Reports, 2017, 7, 12163.	1.6	42
86	Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. Journal of Applied Physics, 2017, 122, .	1.1	226
87	Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Applied Physics Reviews, 2017, 4, .	5.5	72
88	The Specific Vulnerabilities of Cancer Cells to the Cold Atmospheric Plasma-Stimulated Solutions. Scientific Reports, 2017, 7, 4479.	1.6	83
89	Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget, 2017, 8, 15977-15995.	0.8	393
90	A Novel Micro Cold Atmospheric Plasma Device for Glioblastoma Both In Vitro and In Vivo. Cancers, 2017, 9, 61.	1.7	103

#	Article	IF	CITATIONS
91	Cold Atmospheric Plasma Inhibits HIV-1 Replication in Macrophages by Targeting Both the Virus and the Cells. PLoS ONE, 2016, 11, e0165322.	1.1	36
92	Treatment of gastric cancer cells with nonthermal atmospheric plasma generated in water. Biointerphases, 2016, 11, 031010.	0.6	31
93	Cold atmospheric plasma jet in an axial DC electric field. Physics of Plasmas, 2016, 23, 083529.	0.7	26
94	Plasma-chemical synthesis, structure and photoluminescence properties of hybrid graphene nanoflake–BNCO nanowall systems. Journal of Materials Chemistry C, 2016, 4, 9788-9797.	2.7	16
95	Self-organized graphene-like boron nitride containing nanoflakes on copper by low-temperature N2 + H2 plasma. RSC Advances, 2016, 6, 87607-87615.	1.7	11
96	Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Processes and Polymers, 2016, 13, 1151-1156.	1.6	49
97	Thruster Subsystem for the United States Naval Academy's (USNA) Ballistically Reinforced Communication Satellite (BRICSat-P). Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2016, 14, Pb_157-Pb_163.	0.1	18
98	Stabilizing the cold plasma-stimulated medium by regulating medium's composition. Scientific Reports, 2016, 6, 26016.	1.6	105
99	Nanoscaled Metamaterial as an Advanced Heat Pump and Cooling Media. Advanced Materials Technologies, 2016, 1, 1600008.	3.0	28
100	Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale, 2016, 8, 10511-10527.	2.8	97
101	Therapeutic Approaches Based on Plasmas and Nanoparticles. Journal of Nanomedicine Research, 2016, 3, .	1.8	12
102	Principles of using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment. Scientific Reports, 2015, 5, 18339.	1.6	204
103	Toward understanding the selective anticancer capacity of cold atmospheric plasma—A model based on aquaporins (Review). Biointerphases, 2015, 10, 040801.	0.6	168
104	Cold Plasma Accelerates the Uptake of Gold Nanoparticles Into Glioblastoma Cells. Plasma Processes and Polymers, 2015, 12, 1364-1369.	1.6	26
105	Electric propulsion for small satellites. Plasma Physics and Controlled Fusion, 2015, 57, 014005.	0.9	129
106	Guest Editorial Introduction to the Special Issue on Plasma Propulsion. IEEE Transactions on Plasma Science, 2015, 43, 2-4.	0.6	1
107	Plasma for cancer treatment. Plasma Sources Science and Technology, 2015, 24, 033001.	1.3	331
108	Use of cold atmospheric plasma in the treatment of cancer. Biointerphases, 2015, 10, 029403.	0.6	73

7

#	Article	IF	CITATIONS
109	Differential Effects of Cold Atmospheric Plasma in the Treatment of Malignant Glioma. PLoS ONE, 2015, 10, e0126313.	1.1	63
110	The Effect of Tuning Cold Plasma Composition on Glioblastoma Cell Viability. PLoS ONE, 2014, 9, e98652.	1.1	155
111	Performance Characteristics of Micro-cathode Arc Thruster. Journal of Propulsion and Power, 2014, 30, 29-34.	1.3	39
112	Controlling plasma stimulated media in cancer treatment application. Applied Physics Letters, 2014, 105,	1.5	90
113	Deflection of Streamer Path in DC Electric Potential. IEEE Transactions on Plasma Science, 2014, 42, 2402-2403.	0.6	5
114	Cold atmospheric plasma for the ablative treatment of neuroblastoma. Journal of Pediatric Surgery, 2013, 48, 67-73.	0.8	100
115	Plasma Medicine. , 2013, , 359-413.		4
116	Low-temperature plasmas in carbon nanostructure synthesis. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	0.6	63
117	Cold atmospheric plasma in cancer therapy. Physics of Plasmas, 2013, 20, .	0.7	396
118	Laboratory modeling of hypersonic flight conditions. , 2013, , .		0
119	Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells. PLoS ONE, 2013, 8, e73741.	1.1	170
120	Electrical parameters of the streamers of the nonequilibtium atmospheric plasma jets. , 2012, , .		0
121	Analysis of Airbreathing Hall-Effect Thrusters. Journal of Propulsion and Power, 2012, 28, 1399-1405.	1.3	27
122	Numerical simulation of carbon arc discharge for nanoparticle synthesis. Physics of Plasmas, 2012, 19,	0.7	53
123	Measurements of streamer head potential and conductivity of streamer column in cold nonequilibrium atmospheric plasmas. Plasma Sources Science and Technology, 2012, 21, 034006.	1.3	67
124	Targeting the cancer cell cycle by cold atmospheric plasma. Scientific Reports, 2012, 2, 636.	1.6	200
125	Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer, 2011, 105, 1295-1301.	2.9	637
126	Graphene and Carbon Nanotubes From Arc Plasmas: Experiment and Plasma Modeling. IEEE Transactions on Plasma Science, 2011, 39, 2798-2799.	0.6	5

#	Article	IF	CITATIONS
127	Application of electrostatic Langmuir probe to atmospheric arc plasmas producing nanostructures. Physics of Plasmas, 2011, 18, .	0.7	28
128	Plasma rotation in a Micro-Vacuum Arc Thruster. , 2010, , .		0
129	Biomedical applications and Rayleigh microwave diagnostic of atmospheric plasma jet. , 2010, , .		Ο
130	Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon. Applied Physics Letters, 2010, 97, 151503.	1.5	18
131	Temporary-resolved measurement of electron density in small atmospheric plasmas. Applied Physics Letters, 2010, 96, .	1.5	88
132	Electron transport across magnetic field in low-temperature plasmas: An alternative approach for obtaining evidence of Bohm mechanism. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1140-1143.	0.9	8
133	Interaction of atmospheric plasma jet with living tissue. , 2009, , .		0
134	Temporal behavior of cold atmospheric plasma jet. Applied Physics Letters, 2009, 94, .	1.5	104
135	Effect of thermal conductivity on the Knudsen layer at ablative surfaces. Journal of Applied Physics, 2008, 103, 034906.	1.1	17
136	Living tissue under treatment of cold plasma atmospheric jet. Applied Physics Letters, 2008, 93, .	1.5	264
137	Voltage-current characteristics of an anodic arc producing carbon nanotubes. Journal of Applied Physics, 2008, 104, .	1.1	26
138	Ablation and Plasma Formation Due to Laser Irradiance. , 2007, , .		1
139	Ablation Study in a Capillary Sustained Discharge. IEEE Transactions on Magnetics, 2007, 43, 308-312.	1.2	23
140	Modeling of the Plasma-Propellant Interaction. IEEE Transactions on Magnetics, 2007, 43, 313-317.	1.2	28
141	Ge/Si Quantum Dot Formation From Nonâ€Uniform Cluster Fluxes. Plasma Processes and Polymers, 2007, 4, 638-647.	1.6	15
142	On the Mechanism of Energy Transfer in the Plasmaâ€Propellant Interaction. Propellants, Explosives, Pyrotechnics, 2007, 32, 385-391.	1.0	23
143	Electron transport phenomena in plasma devices with E/spl times/B drift. IEEE Transactions on Plasma Science, 2006, 34, 804-814.	0.6	74
144	Model for the Transition to the Diffuse Column Vacuum Arc Based on an Arc Voltage Criteria. , 2006, ,		7

#	Article	IF	CITATIONS
145	Modeling of the Anodic Arc Discharge and Conditions for Single-Wall Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 2006, 6, 1309-1314.	0.9	39
146	Transition mode of the vacuum arc in an axial magnetic field: comparison of experimental results and theory. IEEE Transactions on Plasma Science, 2005, 33, 1527-1531.	0.6	29
147	Visualization of ion flux neutralization effect on electrical field and atom density distribution in Hall thruster channel. IEEE Transactions on Plasma Science, 2005, 33, 526-527.	0.6	6
148	Electron-wall interaction in Hall thrusters. Physics of Plasmas, 2005, 12, 057104.	0.7	114
149	Transition from plasma to space-charge sheath near the electrode in electrical discharges. IEEE Transactions on Plasma Science, 2005, 33, 1481-1486.	0.6	22
150	Modeling of a high-power thruster with anode layer. Physics of Plasmas, 2004, 11, 1715-1722.	0.7	42
151	Ion current distribution on a substrate during nanostructure formation. Journal Physics D: Applied Physics, 2004, 37, 1690-1695.	1.3	43
152	Model of a Diffuse Column Vacuum Arc With Cathode Jets Burning in Parallel With a High-Current Plasma Column. IEEE Transactions on Plasma Science, 2004, 32, 783-791.	0.6	46
153	Characterization of carbon nanotubes produced by arc discharge: Effect of the background pressure. Journal of Applied Physics, 2004, 95, 2749-2754.	1.1	63
154	Ion deposition in a crossed E×B field system with vacuum arc plasma sources. Vacuum, 2003, 72, 335-344.	1.6	21
155	Unipolar arc behavior in high-frequency fields. IEEE Transactions on Plasma Science, 2003, 31, 137-141.	0.6	6
156	Plasma flow and plasma–wall transition in Hall thruster channel. Physics of Plasmas, 2001, 8, 5315-5322.	0.7	163
157	Vaporization of heated materials into discharge plasmas. Journal of Applied Physics, 2001, 89, 3095-3098.	1.1	70
158	On the effect of an axial magnetic field on the high-current vacuum arc. IEEE Transactions on Plasma Science, 2000, 28, 347-350.	0.6	30
159	Electrical discharge in the Teflon cavity of a coaxial pulsed plasma thruster. IEEE Transactions on Plasma Science, 2000, 28, 376-385.	0.6	76
160	Multiply charged ion transport in free boundary vacuum arc plasma jet. Journal of Applied Physics, 1998, 84, 5956-5960.	1.1	17
161	Sheath and presheath structure in the plasma–wall transition layer in an oblique magnetic field. Physics of Plasmas, 1998, 5, 1545-1553.	0.7	56
162	Nonequilibrium macroparticle charging in low-density discharge plasmas. IEEE Transactions on Plasma Science, 1997, 25, 346-352.	0.6	14

#	ARTICLE	IF	CITATIONS
163	Voltage of the vacuum arc with a ring anode in an axial magnetic field. IEEE Transactions on Plasma Science, 1997, 25, 580-585.	0.6	35
164	Transport of macroparticles in magnetized plasma ducts. IEEE Transactions on Plasma Science, 1996, 24, 226-234.	0.6	39
165	2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field. Journal Physics D: Applied Physics, 1996, 29, 1973-1983.	1.3	170
166	Nonstationary macroparticle charging in an arc plasma jet. IEEE Transactions on Plasma Science, 1995, 23, 902-908.	0.6	47
167	Theoretical study of plasma expansion and electrical characteristics in the high-current vacuum arc. , 0, , .		6
168	Unipolar arcs in high frequency field. , 0, , .		0
169	Vacuum arc plasma jets and their applications. , 0, , .		Ο
170	Plasma flow in high-power thruster with anode layer. , 0, , .		0
171	Study of the anodic are discharge for carbon nanotube synthesis. , 0, , .		0
172	The model and numerical simulation of shunting arc ignition. , 0, , .		0
173	Vacuum are plasma jets and their applications. , 0, , .		1
174	Transition from plasma to space-charge sheath near the electrode in electrical discharges. , 0, , .		0
175	Transition mode of the vacuum arc in an axial magnetic field: comparison of experimental results and theory. , 0, , .		2