
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How waterâ€soluble saccharides drive the metabolism of lactic acid bacteria during fermentation of brewers' spent grain. Microbial Biotechnology, 2022, 15, 915-930.	4.2	5
2	A novel functional herbal tea containing probiotic Bacillus coagulans GanedenBC30: An in vitro study using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Journal of Functional Foods, 2022, 88, 104873.	3.4	9
3	Ex Vivo Fecal Fermentation of Human Ileal Fluid Collected After Wild Strawberry Consumption Modulates Human Microbiome Community Structure and Metabolic Output and Protects Against DNA Damage in Colonic Epithelial Cells. Molecular Nutrition and Food Research, 2022, 66, e2100405.	3.3	4
4	Effect of sequential or ternary starters-assisted fermentation on the phenolic and glucosinolate profiles of sauerkraut in comparison with spontaneous fermentation. Food Research International, 2022, 156, 111116.	6.2	8
5	Date Seeds Flour Used as Value-Added Ingredient for Wheat Sourdough Bread: An Example of Sustainable Bio-Recycling. Frontiers in Microbiology, 2022, 13, 873432.	3.5	1
6	Biofilm formation as an extra gear for <i>Apilactobacillus kunkeei</i> to counter the threat of agrochemicals in honeybee crop. Microbial Biotechnology, 2022, 15, 2160-2175.	4.2	5
7	Sourdough performances of the golden cereal Tritordeum: Dynamics of microbial ecology, biochemical and nutritional features. International Journal of Food Microbiology, 2022, 374, 109725.	4.7	8
8	How Microbiome Composition Correlates with Biochemical Changes during Sauerkraut Fermentation: a Focus on Neglected Bacterial Players and Functionalities. Microbiology Spectrum, 2022, 10, .	3.0	14
9	How cereal flours, starters, enzymes, and process parameters affect the in vitro digestibility of sourdough bread. Food Research International, 2022, 159, 111614.	6.2	6
10	Biotechnological re-cycling of apple by-products: A reservoir model to produce a dietary supplement fortified with biogenic phenolic compounds. Food Chemistry, 2021, 336, 127616.	8.2	26
11	Thirty years of knowledge on sourdough fermentation: A systematic review. Trends in Food Science and Technology, 2021, 108, 71-83.	15.1	138
12	Volatilome and Bioaccessible Phenolics Profiles in Lab-Scale Fermented Bee Pollen. Foods, 2021, 10, 286.	4.3	17
13	How multiple farming conditions correlate with the composition of the raw cow's milk lactic microbiome. Environmental Microbiology, 2021, 23, 1702-1716.	3.8	13
14	Nutrients Bioaccessibility and Anti-inflammatory Features of Fermented Bee Pollen: A Comprehensive Investigation. Frontiers in Microbiology, 2021, 12, 622091.	3.5	11
15	Role prediction of Gram-negative species in the resistome of raw cow's milk. International Journal of Food Microbiology, 2021, 340, 109045.	4.7	6
16	Selection of Gut-Resistant Bacteria and Construction of Microbial Consortia for Improving Gluten Digestion under Simulated Gastrointestinal Conditions. Nutrients, 2021, 13, 992.	4.1	16
17	Bioprocessed Brewers' Spent Grain Improves Nutritional and Antioxidant Properties of Pasta. Antioxidants, 2021, 10, 742.	5.1	31
18	Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties, Foods, 2021, 10, 1489	4.3	12

#	Article	IF	CITATIONS
19	Commercial Organic Versus Conventional Whole Rye and Wheat Flours for Making Sourdough Bread: Safety, Nutritional, and Sensory Implications. Frontiers in Microbiology, 2021, 12, 674413.	3.5	8
20	Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chemistry, 2021, 355, 129638.	8.2	44
21	Role of Lactic Acid Bacteria Phospho-Î ² -Glucosidases during the Fermentation of Cereal by-Products. Foods, 2021, 10, 97.	4.3	20
22	Feeding with Sustainably Sourdough Bread Has the Potential to Promote the Healthy Microbiota Metabolism at the Colon Level. Microbiology Spectrum, 2021, 9, e0049421.	3.0	19
23	Brans from hull-less barley, emmer and pigmented wheat varieties: From by-products to bread nutritional improvers using selected lactic acid bacteria and xylanase. International Journal of Food Microbiology, 2020, 313, 108384.	4.7	34
24	The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Critical Reviews in Food Science and Nutrition, 2020, 60, 2158-2173.	10.3	67
25	Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. International Journal of Food Microbiology, 2020, 316, 108426.	4.7	56
26	How fructophilic lactic acid bacteria may reduce the FODMAPs content in wheat-derived baked goods: a proof of concept. Microbial Cell Factories, 2020, 19, 182.	4.0	26
27	Gluten-free diet and gut microbiome. Journal of Cereal Science, 2020, 95, 103058.	3.7	9
28	Extension of the Shelf-Life of Fresh Pasta Using Chickpea Flour Fermented with Selected Lactic Acid Bacteria. Microorganisms, 2020, 8, 1322.	3.6	16
29	Microbial high throughput phenomics: The potential of an irreplaceable omics. Computational and Structural Biotechnology Journal, 2020, 18, 2290-2299.	4.1	26
30	Design of potential probiotic yeast starters tailored for making a cornelian cherry (Cornus mas L.) functional beverage. International Journal of Food Microbiology, 2020, 323, 108591.	4.7	36
31	Diet influences the functions of the human intestinal microbiome. Scientific Reports, 2020, 10, 4247.	3.3	115
32	Lactic acid fermentation enriches the profile of biogenic fatty acid derivatives of avocado fruit (Persea americana Mill.). Food Chemistry, 2020, 317, 126384.	8.2	30
33	Use of Autochthonous Lactobacilli to Increase the Safety of Zgougou. Microorganisms, 2020, 8, 29.	3.6	15
34	Effects of <i>Bifidobacterium longum</i> BB536 and <i>Lactobacillus rhamnosus</i> HN001 in IBS patients. European Journal of Clinical Investigation, 2020, 50, e13201.	3.4	64
35	Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. LWT - Food Science and Technology, 2020, 126, 109314.	5.2	12
36	The Controversial Role of Human Gut Lachnospiraceae. Microorganisms, 2020, 8, 573.	3.6	777

#	Article	IF	CITATIONS
37	Attenuated Lactococcus lactis and Surface Bacteria as Tools for Conditioning the Microbiota and Driving the Ripening of Semisoft Caciotta Cheese. Applied and Environmental Microbiology, 2020, 86, .	3.1	13
38	Genetic Determinants of Hydroxycinnamic Acid Metabolism in Heterofermentative Lactobacilli. Applied and Environmental Microbiology, 2020, 86, .	3.1	37
39	Selection of non-Lactobacillus strains to be used as starters for sourdough fermentation. Food Microbiology, 2020, 90, 103491.	4.2	27
40	Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 2019, 302, 103-113.	4.7	225
41	Exploitation of autochthonous Tuscan sourdough yeasts as potential starters. International Journal of Food Microbiology, 2019, 302, 59-68.	4.7	31
42	Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. International Journal of Food Microbiology, 2019, 302, 47-58.	4.7	107
43	Dynamics of Enterobacteriaceae and lactobacilli in model sourdoughs are driven by pH and concentrations of sucrose and ferulic acid. LWT - Food Science and Technology, 2019, 114, 108394.	5.2	37
44	Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Research International, 2019, 125, 108571.	6.2	36
45	Lactic Acid Fermentation to Re-cycle Apple By-Products for Wheat Bread Fortification. Frontiers in Microbiology, 2019, 10, 2574.	3.5	22
46	Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study). Journal of Clinical Medicine, 2019, 8, 1424.	2.4	81
47	Tap water is one of the drivers that establish and assembly the lactic acid bacterium biota during sourdough preparation. Scientific Reports, 2019, 9, 570.	3.3	15
48	Fermented Portulaca oleracea L. Juice: A Novel Functional Beverage with Potential Ameliorating Effects on the Intestinal Inflammation and Epithelial Injury. Nutrients, 2019, 11, 248.	4.1	43
49	Fructose-rich niches traced the evolution of lactic acid bacteria toward fructophilic species. Critical Reviews in Microbiology, 2019, 45, 65-81.	6.1	48
50	Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study. Nutrients, 2019, 11, 886.	4.1	79
51	How Listeria monocytogenes Shapes Its Proteome in Response to Natural Antimicrobial Compounds. Frontiers in Microbiology, 2019, 10, 437.	3.5	11
52	Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets. Cell Host and Microbe, 2019, 25, 444-453.e3.	11.0	229
53	Maize Milling By-Products: From Food Wastes to Functional Ingredients Through Lactic Acid Bacteria Fermentation. Frontiers in Microbiology, 2019, 10, 561.	3.5	32
54	Novel solid-state fermentation of bee-collected pollen emulating the natural fermentation process of bee bread. Food Microbiology, 2019, 82, 218-230.	4.2	55

#	Article	IF	CITATIONS
55	Beneficial Plant Microorganisms Affect the Endophytic Bacterial Communities of Durum Wheat Roots as Detected by Different Molecular Approaches. Frontiers in Microbiology, 2019, 10, 2500.	3.5	20
56	Sourdough Fermented Breads are More Digestible than Those Started with Baker's Yeast Alone: An In Vivo Challenge Dissecting Distinct Gastrointestinal Responses. Nutrients, 2019, 11, 2954.	4.1	68
57	Wholemeal wheat flours drive the microbiome and functional features of wheat sourdoughs. International Journal of Food Microbiology, 2019, 302, 35-46.	4.7	36
58	Use of autochthonous mesophilic lactic acid bacteria as starter cultures for making Pecorino Crotonese cheese: Effect on compositional, microbiological and biochemical attributes. Food Research International, 2019, 116, 1344-1356.	6.2	35
59	The 7th International Symposium on Sourdough – "Sourdough for health― International Journal of Food Microbiology, 2019, 302, 1-2.	4.7	3
60	Clinical and Microbiological Effect of a Multispecies Probiotic Supplementation in Celiac Patients With Persistent IBS-type Symptoms. Journal of Clinical Gastroenterology, 2019, 53, e117-e125.	2.2	91
61	The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Current Medicinal Chemistry, 2019, 26, 3567-3583.	2.4	74
62	Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. International Journal of Food Microbiology, 2018, 266, 173-182.	4.7	55
63	Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification. International Journal of Food Microbiology, 2018, 279, 14-25.	4.7	53
64	How to improve the gluten-free diet: The state of the art from a food science perspective. Food Research International, 2018, 110, 22-32.	6.2	74
65	Wheat endophytic lactobacilli drive the microbial and biochemical features of sourdoughs. Food Microbiology, 2018, 70, 162-171.	4.2	45
66	Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Current Opinion in Biotechnology, 2018, 49, 64-72.	6.6	249
67	New Protocol for Production of Reduced-Gluten Wheat Bread and Pasta and Clinical Effect in Patients with Irritable Bowel Syndrome: A randomised, Double-Blind, Cross-Over Study. Nutrients, 2018, 10, 1873.	4.1	16
68	Lactic Acid Bacterium Population Dynamics in Artisan Sourdoughs Over One Year of Daily Propagations Is Mainly Driven by Flour Microbiota and Nutrients. Frontiers in Microbiology, 2018, 9, 1984.	3.5	14
69	The Distinguishing Features of Italian Cheese Manufacture. , 2018, , 61-97.		2
70	Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends in Food Science and Technology, 2018, 78, 244-254.	15.1	114
71	Dynamic and Assembly of Epiphyte and Endophyte Lactic Acid Bacteria During the Life Cycle of Origanum vulgare L Frontiers in Microbiology, 2018, 9, 1372.	3.5	46
72	How <i>Lactobacillus plantarum</i> shapes its transcriptome in response to contrasting habitats. Environmental Microbiology, 2018, 20, 3700-3716.	3.8	33

MARCO GOBBETTI

#	Article	IF	CITATIONS
73	The Most Traditional and Popular Italian Cheeses. , 2018, , 99-274.		4
74	Bioprocessing technology to exploit organic palm date (Phoenix dactylifera L. cultivar Siwi) fruit as a functional dietary supplement. Journal of Functional Foods, 2017, 31, 9-19.	3.4	47
75	Influence of fermented faba bean flour on the nutritional, technological and sensory quality of fortified pasta. Food and Function, 2017, 8, 860-871.	4.6	46
76	Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity. Food Microbiology, 2017, 65, 25-35.	4.2	41
77	Sourdough-type propagation of faba bean flour: Dynamics of microbial consortia and biochemical implications. International Journal of Food Microbiology, 2017, 248, 10-21.	4.7	54
78	Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice. International Journal of Food Microbiology, 2017, 248, 56-62.	4.7	102
79	Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion. Applied and Environmental Microbiology, 2017, 83, .	3.1	46
80	Multiple microbial cell-free extracts improve the microbiological, biochemical and sensory features of ewes' milk cheese. Food Microbiology, 2017, 66, 129-140.	4.2	7
81	Microbial cell-free extracts affect the biochemical characteristics and sensorial quality of sourdough bread. Food Chemistry, 2017, 237, 159-168.	8.2	38
82	Sourdough authentication: quantitative PCR to detect the lactic acid bacterial microbiota in breads. Scientific Reports, 2017, 7, 624.	3.3	24
83	Hydrolysate from a mixture of legume flours with antifungal activity as an ingredient for prolonging the shelf-life of wheat bread. Food Microbiology, 2017, 64, 72-82.	4.2	49
84	Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT - Food Science and Technology, 2017, 78, 215-221.	5.2	109
85	Lactic acid fermentation enriches the profile of biogenic compounds and enhances the functional features of common purslane (Portulaca oleracea L.). Journal of Functional Foods, 2017, 39, 175-185.	3.4	24
86	Dietary Fibers and Protective Lactobacilli Drive Burrata Cheese Microbiome. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
87	Use of fermented milling by-products as functional ingredient to develop a low-glycaemic index bread. Journal of Cereal Science, 2017, 77, 235-242.	3.7	37
88	Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International Journal of Food Microbiology, 2017, 241, 252-261.	4.7	117
89	Beta-Glucans Supplementation Associates with Reduction in P-Cresyl Sulfate Levels and Improved Endothelial Vascular Reactivity in Healthy Individuals. PLoS ONE, 2017, 12, e0169635.	2.5	54

#	Article	IF	CITATIONS
91	Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties. PLoS ONE, 2016, 11, e0152575.	2.5	66
92	Different Flour Microbial Communities Drive to Sourdoughs Characterized by Diverse Bacterial Strains and Free Amino Acid Profiles. Frontiers in Microbiology, 2016, 7, 1770.	3.5	40
93	From an imbalance to a new imbalance: Italian-style gluten-free diet alters the salivary microbiota and metabolome of African celiac children. Scientific Reports, 2016, 5, 18571.	3.3	31
94	Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches. Scientific Reports, 2016, 6, 27392.	3.3	34
95	Drivers for the establishment and composition of the sourdough lactic acid bacteria biota. International Journal of Food Microbiology, 2016, 239, 3-18.	4.7	131
96	Novel Fermented Fruit and Vegetable-Based Products. Food Engineering Series, 2016, , 279-291.	0.7	11
97	Characterization of the Bread Made with Durum Wheat Semolina Rendered Gluten Free by Sourdough Biotechnology in Comparison with Commercial Glutenâ€Free Products. Journal of Food Science, 2016, 81, H2263-72.	3.1	21
98	Selection of Amine-Oxidizing Dairy Lactic Acid Bacteria and Identification of the Enzyme and Gene Involved in the Decrease of Biogenic Amines. Applied and Environmental Microbiology, 2016, 82, 6870-6880.	3.1	75
99	Metabolism of Fructophilic Lactic Acid Bacteria Isolated from the Apis mellifera L. Bee Gut: Phenolic Acids as External Electron Acceptors. Applied and Environmental Microbiology, 2016, 82, 6899-6911.	3.1	70
100	Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. International Journal of Food Microbiology, 2016, 239, 125-132.	4.7	30
101	Stress Physiology of Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 837-890.	6.6	487
102	How organic farming of wheat may affect the sourdough and the nutritional and technological features of leavened baked goods. International Journal of Food Microbiology, 2016, 239, 44-53.	4.7	17
103	Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Scientific Reports, 2016, 6, 32452.	3.3	84
104	Ensuring safety in artisanal food microbiology. Nature Microbiology, 2016, 1, 16171.	13.3	21
105	Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome, 2016, 4, 57.	11.1	101
106	Added ingredients affect the microbiota and biochemical characteristics of durum wheat type-I sourdough. Food Microbiology, 2016, 60, 112-123.	4.2	48
107	Cloning, expression and characterization of a β-d-xylosidase from Lactobacillus rossiae DSM 15814T. Microbial Cell Factories, 2016, 15, 72.	4.0	24
108	Functional proteomics within the genus <i>Lactobacillus</i> . Proteomics, 2016, 16, 946-962.	2.2	64

7

#	Article	IF	CITATIONS
109	Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L.) fruit puree. Food Microbiology, 2016, 59, 176-189.	4.2	50
110	Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiology, 2016, 56, 1-13.	4.2	163
111	Relationships among house, rind and core microbiotas during manufacture of traditional Italian cheeses at the same dairy plant. Food Microbiology, 2016, 54, 115-126.	4.2	86
112	Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation. International Journal of Food Microbiology, 2016, 225, 9-19.	4.7	40
113	High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65, 1812-1821.	12.1	1,092
114	Spatial Distribution of the Metabolically Active Microbiota within Italian PDO Ewes' Milk Cheeses. PLoS ONE, 2016, 11, e0153213.	2.5	48
115	Italian legumes: effect of sourdough fermentation on lunasin-like polypeptides. Microbial Cell Factories, 2015, 14, 168.	4.0	36
116	Organic Cultivation of Triticum turgidum subsp. durum Is Reflected in the Flour-Sourdough Fermentation-Bread Axis. Applied and Environmental Microbiology, 2015, 81, 3192-3204.	3.1	68
117	Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microbial Cell Factories, 2015, 14, 67.	4.0	80
118	Phenotypic and molecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation. Food Microbiology, 2015, 48, 206-215.	4.2	41
119	A survey of the main technology, biochemical and microbiological features influencing the concentration of biogenic amines of twenty Apulian and Sicilian (Southern Italy) cheeses. International Dairy Journal, 2015, 43, 61-69.	3.0	24
120	Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends in Food Science and Technology, 2015, 45, 167-178.	15.1	160
121	Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle. Applied and Environmental Microbiology, 2015, 81, 6736-6748.	3.1	106
122	House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs. Food Microbiology, 2015, 52, 66-76.	4.2	125
123	Microbial cell-free extracts as sources of enzyme activities to be used for enhancement flavor development of ewe milk cheese. Journal of Dairy Science, 2015, 98, 5874-5889.	3.4	18
124	Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread. Applied and Environmental Microbiology, 2015, 81, 4195-4206.	3.1	27
125	Salivary Microbiota Associated with Immunoglobulin A Nephropathy. Microbial Ecology, 2015, 70, 557-565.	2.8	47
126	Comparative proteomic analysis of biofilm and planktonic cells of <i>Lactobacillus plantarum</i> DB200. Proteomics, 2015, 15, 2244-2257.	2.2	45

#	Article	IF	CITATIONS
127	Autism spectrum disorders and intestinal microbiota. Gut Microbes, 2015, 6, 207-213.	9.8	231
128	Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome. Applied and Environmental Microbiology, 2015, 81, 7945-7956.	3.1	120
129	Lactic acid bacterium and yeast microbiotas of sixteen French traditional sourdoughs. International Journal of Food Microbiology, 2015, 215, 161-170.	4.7	115
130	Iranian wheat flours from rural and industrial mills: Exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads. Food Microbiology, 2015, 47, 99-110.	4.2	58
131	Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. International Journal of Food Microbiology, 2015, 196, 51-61.	4.7	123
132	Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 2015, 46, 272-279.	4.2	211
133	Microbiota and Metabolome Associated with Immunoglobulin A Nephropathy (IgAN). PLoS ONE, 2014, 9, e99006.	2.5	185
134	Hydroxycinnamic Acids Used as External Acceptors of Electrons: an Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria. Applied and Environmental Microbiology, 2014, 80, 7574-7582.	3.1	98
135	What Would You Like to Eat, Mr CKD Microbiota? A Mediterranean Diet, please!. Kidney and Blood Pressure Research, 2014, 39, 114-123.	2.0	77
136	Sourdough lactic acid bacteria: Exploration of non-wheat cereal-based fermentation. Food Microbiology, 2014, 37, 51-58.	4.2	122
137	Manufacture and characterization of pasta made with wheat flour rendered gluten-free using fungal proteases and selected sourdough lactic acid bacteria. Journal of Cereal Science, 2014, 59, 79-87.	3.7	51
138	Salivary Microbiota and Metabolome Associated with Celiac Disease. Applied and Environmental Microbiology, 2014, 80, 3416-3425.	3.1	93
139	Diversity of the Lactic Acid Bacterium and Yeast Microbiota in the Switch from Firm- to Liquid-Sourdough Fermentation. Applied and Environmental Microbiology, 2014, 80, 3161-3172.	3.1	84
140	Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiology, 2014, 37, 59-68.	4.2	74
141	Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. Journal of Proteomics, 2014, 96, 366-380.	2.4	82
142	Ecological parameters influencing microbial diversity and stability of traditional sourdough. International Journal of Food Microbiology, 2014, 171, 136-146.	4.7	227
143	Quorum-Sensing Regulation of Constitutive Plantaricin by Lactobacillus plantarum Strains under a Model System for Vegetables and Fruits. Applied and Environmental Microbiology, 2014, 80, 777-787.	3.1	38
144	Assessment of comparative methods for storing type-I wheat sourdough. LWT - Food Science and Technology, 2014, 59, 948-955.	5.2	18

#	Article	IF	CITATIONS
145	Microbial Ecology Dynamics Reveal a Succession in the Core Microbiota Involved in the Ripening of Pasta Filata Caciocavallo Pugliese Cheese. Applied and Environmental Microbiology, 2014, 80, 6243-6255.	3.1	69
146	Causal Relationship between Microbial Ecology Dynamics and Proteolysis during Manufacture and Ripening of Protected Designation of Origin (PDO) Cheese Canestrato Pugliese. Applied and Environmental Microbiology, 2014, 80, 4085-4094.	3.1	47
147	Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. International Journal of Food Microbiology, 2014, 180, 78-87.	4.7	142
148	Exploitation of Albanian wheat cultivars: Characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation. Food Microbiology, 2014, 44, 96-107.	4.2	66
149	How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 2014, 37, 30-40.	4.2	291
150	Adverse Reactions to Gluten. , 2014, , 171-177.		0
151	Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus. PLoS ONE, 2014, 9, e107232.	2.5	74
152	The Same Microbiota and a Potentially Discriminant Metabolome in the Saliva of Omnivore, Ovo-Lacto-Vegetarian and Vegan Individuals. PLoS ONE, 2014, 9, e112373.	2.5	115
153	The lactic acid bacteria and yeast microbiota of eighteen sourdoughs used for the manufacture of traditional Italian sweet leavened baked goods. International Journal of Food Microbiology, 2013, 163, 71-79.	4.7	134
154	Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica) Tj ETQq0 0 0 rgBT 2013, 163, 184-192.	Overlock 4.7	2 10 Tf 50 387 128
155	Synthesis of 2-methoxy benzoquinone and 2,6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ. Microbial Cell Factories, 2013, 12, 105.	4.0	34
156	Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 2013, 33, 1-10.	4.2	471
157	Physiology and Biochemistry of Lactic Acid Bacteria. , 2013, , 183-216.		13
158	Antifungal activity of Meyerozyma guilliermondii: Identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiology, 2013, 33, 243-251.	4.2	78
159	Lactic acid fermentation as a tool to enhance the functional features of Echinacea spp. Microbial Cell Factories, 2013, 12, 44.	4.0	32
160	Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and γ-amino butyric acid (GABA). LWT - Food Science and Technology, 2013, 51, 183-189.	5.2	92
161	Effects of the Peptide Pheromone Plantaricin A and Cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the Exoproteome and the Adhesion Capacity of Lactobacillus plantarum DC400. Applied and Environmental Microbiology, 2013, 79, 2657-2669.	3.1	30
162	Microbial Ecology Dynamics during Rye and Wheat Sourdough Preparation. Applied and Environmental Microbiology, 2013, 79, 7827-7836.	3.1	183

#	Article	IF	CITATIONS
163	Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE, 2013, 8, e76993.	2.5	640
164	Draft Genome Sequence of Lactobacillus rossiae DSM 15814 ^T . Journal of Bacteriology, 2012, 194, 5460-5461.	2.2	5
165	Lactic Acid Bacterium and Yeast Microbiotas of 19 Sourdoughs Used for Traditional/Typical Italian Breads: Interactions between Ingredients and Microbial Species Diversity. Applied and Environmental Microbiology, 2012, 78, 1251-1264.	3.1	182
166	Selected Lactic Acid Bacteria Synthesize Antioxidant Peptides during Sourdough Fermentation of Cereal Flours. Applied and Environmental Microbiology, 2012, 78, 1087-1096.	3.1	176
167	Metabolic and proteomic adaptation of <i><scp>L</scp>actobacillus rhamnosus</i> strains during growth under cheeseâ€like environmental conditions compared to de <scp>M</scp> an, <scp>R</scp> ogosa, and <scp>S</scp> harpe medium. Proteomics, 2012, 12, 3206-3218.	2.2	54
168	Influence of Artisan Bakery- or Laboratory-Propagated Sourdoughs on the Diversity of Lactic Acid Bacterium and Yeast Microbiotas. Applied and Environmental Microbiology, 2012, 78, 5328-5340.	3.1	120
169	Synthesis of the Cancer Preventive Peptide Lunasin by Lactic Acid Bacteria During Sourdough Fermentation. Nutrition and Cancer, 2012, 64, 111-120.	2.0	70
170	Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread. Food Research International, 2012, 46, 304-313.	6.2	105
171	Effect of lactose on gut microbiota and metabolome of infants with cow's milk allergy. Pediatric Allergy and Immunology, 2012, 23, 420-427.	2.6	130
172	The sourdough fermentation may enhance the recovery from intestinal inflammation of coeliac patients at the early stage of the gluten-free diet. European Journal of Nutrition, 2012, 51, 507-512.	3.9	18
173	Novel probiotic candidates for humans isolated from raw fruits and vegetables. Food Microbiology, 2012, 31, 116-125.	4.2	97
174	Yogurt-like beverages made of a mixture of cereals, soy and grape must: Microbiology, texture, nutritional and sensory properties. International Journal of Food Microbiology, 2012, 155, 120-127.	4.7	142
175	The antimicrobial peptide pheromone <scp>P</scp> lantaricin <scp>A</scp> increases antioxidant defenses of human keratinocytes and modulates the expression of filaggrin, involucrin, βâ€defensin 2 and tumor necrosis factorâ€Î± genes. Experimental Dermatology, 2012, 21, 665-671.	2.9	21
176	The New Perspective. SpringerBriefs in Food, Health and Nutrition, 2012, , 71-75.	0.5	1
177	The Behavior in Foods. SpringerBriefs in Food, Health and Nutrition, 2012, , 39-60.	0.5	0
178	The Phenotypes. SpringerBriefs in Food, Health and Nutrition, 2012, , 21-37.	0.5	0
179	The Probiotic Message. SpringerBriefs in Food, Health and Nutrition, 2012, , 61-70.	0.5	0
180	Safety for Patients With Celiac Disease of Baked Goods Made of Wheat Flour Hydrolyzed During Food Processing. Clinical Gastroenterology and Hepatology, 2011, 9, 24-29.	4.4	103

#	Article	IF	CITATIONS
181	Stress Responses of Lactobacilli. , 2011, , 219-249.		30
182	Disruption of the gene encoding glutamate dehydrogenase affects growth, amino acids catabolism and survival of Lactobacillus plantarum UC1001. International Dairy Journal, 2011, 21, 59-68.	3.0	9
183	Manufacture of Italian Caciotta-type cheeses with adjuncts and attenuated adjuncts of selected non-starter lactobacilli. International Dairy Journal, 2011, 21, 254-260.	3.0	30
184	Plantaricin A synthesized by Lactobacillus plantarum induces in vitro proliferation and migration of human keratinocytes and increases the expression of TGF-β1, FGF7, VEGF-A and IL-8 genes. Peptides, 2011, 32, 1815-1824.	2.4	36
185	Utilization of African Grains for Sourdough Bread Making. Journal of Food Science, 2011, 76, M329-35.	3.1	34
186	Scouting the application of sourdough to frozen dough bread technology. Journal of Cereal Science, 2011, 54, 296-304.	3.7	31
187	Manufacture and characterization of functional emmer beverages fermented by selected lactic acid bacteria. Food Microbiology, 2011, 28, 526-536.	4.2	107
188	Exploitation of sweet cherry (Prunus avium L.) puree added of stem infusion through fermentation by selected autochthonous lactic acid bacteria. Food Microbiology, 2011, 28, 900-909.	4.2	93
189	Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology, 2011, 28, 1062-1071.	4.2	128
190	Functional milk beverage fortified with phenolic compounds extracted from olive vegetation water, and fermented with functional lactic acid bacteria. International Journal of Food Microbiology, 2011, 147, 45-52.	4.7	125
191	Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiology, 2011, 11, 219.	3.3	251
192	Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chemistry, 2011, 127, 952-959.	8.2	159
193	Proteomics of the bacterial cross-talk by quorum sensing. Journal of Proteomics, 2011, 74, 19-34.	2.4	73
194	Antifungal Activity of Wickerhamomyces anomalus and Lactobacillus plantarum during Sourdough Fermentation: Identification of Novel Compounds and Long-Term Effect during Storage of Wheat Bread. Applied and Environmental Microbiology, 2011, 77, 3484-3492.	3.1	143
195	Glutenâ€free Sourdough Wheat Baked Goods Appear Safe for Young Celiac Patients: A Pilot Study. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51, 777-783.	1.8	82
196	Use of sourdough fermented wheat germ for enhancing the nutritional, texture and sensory characteristics of the white bread. European Food Research and Technology, 2010, 230, 645-654.	3.3	97
197	Synthesis of Î ³ -aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Applied Microbiology and Biotechnology, 2010, 86, 731-741.	3.6	140
	Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L.) Ti ETOO	0 0 0 roRT	Overlock 10

198

c structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L.) Tj ETQq0 0 0 rgBT /Overlock 10 4.2 95

381-389.

#	Article	IF	CITATIONS
199	Robustness of Lactobacillus plantarum starters during daily propagation of wheat flour sourdough type I. Food Microbiology, 2010, 27, 897-908.	4.2	123
200	Exploitation of Acha (Digitaria exiliis) and Iburu (Digitaria iburua) flours: Chemical characterization and their use for sourdough fermentation. Food Microbiology, 2010, 27, 1043-1050.	4.2	26
201	Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of Î ³ -aminobutyric acid (GABA). International Journal of Food Microbiology, 2010, 137, 236-245.	4.7	199
202	Twoâ€dimensional electrophoresis and IgEâ€mediated food allergy. Electrophoresis, 2010, 31, 2126-2136.	2.4	17
203	Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chemistry, 2010, 119, 1079-1089.	8.2	227
204	Quorum sensing in sourdough <i>Lactobacillus plantarum</i> DC400: Induction of plantaricin A (PlnA) under co ultivation with other lactic acid bacteria and effect of PlnA on bacterial and Cacoâ€2 cells. Proteomics, 2010, 10, 2175-2190.	2.2	67
205	Mechanism of Degradation of Immunogenic Gluten Epitopes from <i>Triticum turgidum</i> L. var. <i>durum</i> by Sourdough Lactobacilli and Fungal Proteases. Applied and Environmental Microbiology, 2010, 76, 508-518.	3.1	93
206	Synthesis of Isoflavone Aglycones and Equol in Soy Milks Fermented by Food-Related Lactic Acid Bacteria and Their Effect on Human Intestinal Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 10338-10346.	5.2	69
207	Taxonomic Structure and Monitoring of the Dominant Population of Lactic Acid Bacteria during Wheat Flour Sourdough Type I Propagation Using <i>Lactobacillus sanfranciscensis</i> Starters. Applied and Environmental Microbiology, 2009, 75, 1099-1109.	3.1	125
208	Different Fecal Microbiotas and Volatile Organic Compounds in Treated and Untreated Children with Celiac Disease. Applied and Environmental Microbiology, 2009, 75, 3963-3971.	3.1	131
209	Fermented goats' milk produced with selected multiple starters as a potentially functional food. Food Microbiology, 2009, 26, 559-564.	4.2	82
210	Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices. International Journal of Food Microbiology, 2009, 128, 473-483.	4.7	157
211	Use of autochthonous starters to ferment red and yellow peppers (Capsicum annum L.) to be stored at room temperature. International Journal of Food Microbiology, 2009, 130, 108-116.	4.7	66
212	Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. International Journal of Food Microbiology, 2009, 131, 189-196.	4.7	49
213	Sourdough fermentation as a tool for the manufacture of low-glycemic index white wheat bread enriched in dietary fibre. European Food Research and Technology, 2009, 229, 593-601.	3.3	96
214	Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Research in Microbiology, 2009, 160, 358-366.	2.1	56
215	Selection and use of autochthonous multiple strain cultures for the manufacture of high-moisture traditional Mozzarella cheese. International Journal of Food Microbiology, 2008, 125, 123-132.	4.7	55
216	Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. International Journal of Food Microbiology, 2008, 127, 220-228.	4.7	119

#	Article	IF	CITATIONS
217	Comparison of the compositional, microbiological, biochemical and volatile profile characteristics of three Italian PDO fermented sausages. Meat Science, 2008, 79, 224-235.	5.5	73
218	Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science and Technology, 2008, 19, 513-521.	15.1	281
219	Long-Term Fungal Inhibitory Activity of Water-Soluble Extracts of <i>Phaseolus vulgaris</i> cv. Pinto and Sourdough Lactic Acid Bacteria during Bread Storage. Applied and Environmental Microbiology, 2008, 74, 7391-7398.	3.1	89
220	Synthesis of Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptides and Î ³ -Aminobutyric Acid (GABA) during Sourdough Fermentation by Selected Lactic Acid Bacteria. Journal of Agricultural and Food Chemistry, 2008, 56, 6936-6943.	5.2	145
221	Proteomic Analysis by Two-Dimensional Gel Electrophoresis and Starch Characterization of Triticum turgidum L. var. durum Cultivars for Pasta Making. Journal of Agricultural and Food Chemistry, 2008, 56, 8619-8628.	5.2	32
222	Sourdough/lactic acid bacteria. , 2008, , 267-288.		16
223	Use of Selected Sourdough Strains of Lactobacillus for Removing Gluten and Enhancing the Nutritional Properties of Gluten-Free Bread. Journal of Food Protection, 2008, 71, 1491-1495.	1.7	93
224	Compositional, microbiological, biochemical, volatile profile and sensory characterization of four Italian semi-hard goats' cheeses. Journal of Dairy Research, 2007, 74, 468-477.	1.4	14
225	Use of sourdough lactobacilli and oat fibre to decrease the glycaemic index of white wheat bread. British Journal of Nutrition, 2007, 98, 1196-1205.	2.3	83
226	Highly Efficient Gluten Degradation by Lactobacilli and Fungal Proteases during Food Processing: New Perspectives for Celiac Disease. Applied and Environmental Microbiology, 2007, 73, 4499-4507.	3.1	217
227	Synthesis of γ-Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian Cheeses. Applied and Environmental Microbiology, 2007, 73, 7283-7290.	3.1	375
228	Probiotic Preparation Has the Capacity To Hydrolyze Proteins Responsible for Wheat Allergy. Journal of Food Protection, 2007, 70, 135-144.	1.7	32
229	Cell–cell communication in sourdough lactic acid bacteria: A proteomic study in <i>Lactobacillus sanfranciscensis</i> CB1. Proteomics, 2007, 7, 2430-2446.	2.2	47
230	Genotypic and phenotypic diversity ofLactobacillus rossiaestrains isolated from sourdough. Journal of Applied Microbiology, 2007, 103, 821-835.	3.1	34
231	Third International Symposium on Sourdough: From Tradition to Innovation. Food Microbiology, 2007, 24, 113.	4.2	3
232	Sourdough applications for bread production: Industrial perspectives. Food Microbiology, 2007, 24, 149.	4.2	4
233	Sourdough lactobacilli and celiac disease. Food Microbiology, 2007, 24, 187-196.	4.2	125
234	Cell–cell communication in food related bacteria. International Journal of Food Microbiology, 2007, 120, 34-45.	4.7	74

MARCO GOBBETTI

#	Article	IF	CITATIONS
235	Survival and persistence of Lactobacillus plantarum 4.1 and Lactobacillus reuteri 3S7 in the gastrointestinal tract of pigs. Veterinary Microbiology, 2007, 123, 133-144.	1.9	38
236	Production of active angiotensinâ€l converting enzyme inhibitory peptides derived from bovine β asein by recombinant DNA technologies. Biotechnology Journal, 2007, 2, 1425-1434.	3.5	25
237	Glucan and Fructan Production by Sourdough <i>Weissella cibaria</i> and <i>Lactobacillus plantarum</i> . Journal of Agricultural and Food Chemistry, 2006, 54, 9873-9881.	5.2	141
238	VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for Celiac Sprue probiotics and gluten intolerance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 80-93.	3.8	197
239	Assessing the proteolytic and lipolytic activities of single strains of mesophilic lactobacilli as adjunct cultures using a Caciotta cheese model system. International Dairy Journal, 2006, 16, 119-130.	3.0	56
240	Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Research in Microbiology, 2006, 157, 792-801.	2.1	187
241	Identification of peptides in antimicrobial fractions of cheese extracts by electrospray ionization ion trap mass spectrometry coupled to a two-dimensional liquid chromatographic separation. Rapid Communications in Mass Spectrometry, 2006, 20, 447-455.	1.5	37
242	Characterisation and quality assessment of ripened sausages in relation to the origin of raw material used. European Food Research and Technology, 2006, 222, 376-379.	3.3	5
243	Use of selected sourdough lactic acid bacteria to hydrolyze wheat and rye proteins responsible for cereal allergy. European Food Research and Technology, 2006, 223, 405-411.	3.3	48
244	Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour. Journal of Cereal Science, 2006, 43, 301-314.	3.7	80
245	Response of Lactobacillus helveticus PR4 to Heat Stress during Propagation in Cheese Whey with a Gradient of Decreasing Temperatures. Applied and Environmental Microbiology, 2006, 72, 4503-4514.	3.1	48
246	Partial purification and characterization of an X-prolyl dipeptidyl aminopeptidase from Lactobacillus sanfranciscensis CB1. Food Chemistry, 2005, 91, 535-544.	8.2	29
247	Evaluation of the ability of Yarrowia lipolytica to impart strain-dependent characteristics to cheese when used as a ripening adjunct. International Journal of Dairy Technology, 2005, 58, 89-99.	2.8	46
248	Lactobacillus rossii sp. nov., isolated from wheat sourdough. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 35-40.	1.7	83
249	Pasta Made from Durum Wheat Semolina Fermented with Selected Lactobacilli as a Tool for a Potential Decrease of the Cluten Intolerance. Journal of Agricultural and Food Chemistry, 2005, 53, 4393-4402.	5.2	68
250	Biochemistry and physiology of sourdough lactic acid bacteria. Trends in Food Science and Technology, 2005, 16, 57-69.	15.1	254
251	Heat Shock Response in Lactobacillus plantarum. Applied and Environmental Microbiology, 2004, 70, 1336-1346.	3.1	141
252	Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. International Journal of Dairy Technology, 2004, 57, 173-188.	2.8	213

#	Article	IF	CITATIONS
253	Environmental stress responses in Lactobacillus : A review. Proteomics, 2004, 4, 106-122.	2.2	353
254	Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients. Applied and Environmental Microbiology, 2004, 70, 1088-1096.	3.1	236
255	Uses of mares' milk in manufacture of fermented milks. International Dairy Journal, 2004, 14, 767-775.	3.0	66
256	Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology, 2003, 87, 259-270.	4.7	242
257	Characterization of sourdough lactic acid bacteria based on genotypic and cell-wall protein analyses. Journal of Applied Microbiology, 2003, 94, 641-654.	3.1	95
258	Effect of proteinases of starter bacteria on the growth and proteolytic activity of Lactobacillus plantarum DPC2741. International Dairy Journal, 2003, 13, 145-157.	3.0	18
259	Comparison of the microbiological, compositional, biochemical, volatile profile and sensory characteristics of three Italian PDO ewes' milk cheeses. International Dairy Journal, 2003, 13, 961-972.	3.0	117
260	Angiotensin I-Converting-Enzyme-Inhibitory and Antibacterial Peptides from Lactobacillus helveticus PR4 Proteinase-Hydrolyzed Caseins of Milk from Six Species. Applied and Environmental Microbiology, 2003, 69, 5297-5305.	3.1	243
261	Production of Caseinophosphopeptides from Na-Caseinates Prepared from the Milk of Several Species by a Proteinase of Lactobacillus helveticus PR4. Food Biotechnology, 2003, 17, 183-192.	1.5	6
262	Arginine Catabolism by Sourdough Lactic Acid Bacteria: Purification and Characterization of the Arginine Deiminase Pathway Enzymes from Lactobacillus sanfranciscensis CB1. Applied and Environmental Microbiology, 2002, 68, 6193-6201.	3.1	113
263	Lactobacillus reuteri DSM 20016: purification and characterization of a cystathionine γ-lyase and use as adjunct starter in cheesemaking. Journal of Dairy Research, 2002, 69, 255-267.	1.4	41
264	Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Applied and Environmental Microbiology, 2002, 68, 623-633.	3.1	256
265	Microbiological, compositional, biochemical and textural characterisation of Caciocavallo Pugliese cheese during ripening. International Dairy Journal, 2002, 12, 511-523.	3.0	101
266	Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. International Journal of Food Microbiology, 2001, 64, 95-104.	4.7	229
267	Microbiological and biochemical characteristics of Canestrato Pugliese cheese made from raw milk, pasteurized milk or by heating the curd in hot whey. International Journal of Food Microbiology, 2001, 67, 35-48.	4.7	133
268	Interactions between yeasts and bacteria in the smear surface-ripened cheeses. International Journal of Food Microbiology, 2001, 69, 1-10.	4.7	151
269	Characterization of Non-Starter Lactic Acid Bacteria from Italian Ewe Cheeses Based on Phenotypic, Genotypic, and Cell Wall Protein Analyses. Applied and Environmental Microbiology, 2001, 67, 2011-2020.	3.1	191
270	The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology (United Kingdom), 2001, 147, 1863-1873.	1.8	119

#	Article	IF	CITATIONS
271	Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes. Food Microbiology, 2000, 17, 129-141.	4.2	118
272	Combined Effect of Sourdough Lactic Acid Bacteria and Additives on Bread Firmness and Staling. Journal of Agricultural and Food Chemistry, 2000, 48, 3044-3051.	5.2	207
273	Purification and Characterization of Novel Antifungal Compounds from the Sourdough <i>Lactobacillus plantarum</i> Strain 21B. Applied and Environmental Microbiology, 2000, 66, 4084-4090.	3.1	540
274	Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Applied and Environmental Microbiology, 2000, 66, 3898-3904.	3.1	317
275	Study of the effects of temperature, pH and NaCl on the peptidase activities of non-starter lactic acid bacteria (NSLAB) by quadratic response surface methodology. International Dairy Journal, 1999, 9, 865-875.	3.0	44
276	Purification and characterization of two extracellular proteinases from Arthrobacter nicotianae 9458. FEMS Microbiology Letters, 1999, 170, 327-333.	1.8	1
277	Purification and characterization of an extracellular proline iminopeptidase from Arthrobacter nicotianae 9458. FEMS Microbiology Letters, 1999, 178, 191-197.	1.8	2
278	PURIFICATION AND CHARACTERIZATION OF AN ENDOPEPTIDASE FROM PSEUDOMONAS FLUORESCENS ATCC 948. Journal of Food Biochemistry, 1998, 22, 17-35.	2.9	9
279	Purification and characterization of cystathionine γ-lyase fromLactobacillus fermentumDT41. FEMS Microbiology Letters, 1998, 166, 197-202.	1.8	51
280	Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology, 1998, 50, 253-256.	3.6	292
281	Peptides from several italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, pseudomonas fluorescens ATCC 948 and to the angiotensin I-converting enzyme. Enzyme and Microbial Technology, 1998, 22, 687-694.	3.2	118
282	The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends in Food Science and Technology, 1998, 9, 267-274.	15.1	389
283	Accelerated ripening of Pecorino Umbro cheese. Journal of Dairy Research, 1998, 65, 631-642.	1.4	25
284	Purification and characterization of a cell surface-associated esterase from Lactobacillus fermentum DT41. International Dairy Journal, 1997, 7, 13-21.	3.0	50
285	Lactobacillus sanfranciscoa key sourdough lactic acid bacterium:a review. Food Microbiology, 1997, 14, 175-187.	4.2	156
286	The Sourdough Microflora. Cellular Localization and Characterization of Proteolytic Enzymes in Lactic Acid Bacteria. LWT - Food Science and Technology, 1996, 29, 561-569.	5.2	34
287	Peptides inhibitory to endopeptidase and aminopeptidase fromLactococcus lactis ssp.lactis MG1363, released from bovine?-casein by chymosin, trypsin or chymotrypsin. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 329-333.	0.6	6
288	Co-metabolism of citrate and maltose byLactobacillus brevis subsp.lindneri CB1 citrate-negative strain: effect on growth, end-products and sourdough fermentation. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 203, 82-87.	0.6	34

MARCO GOBBETTI

53

#	Article	IF	CITATIONS
289	Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance fromLactobacillus sanfranciscoC57. Food Microbiology, 1996, 13, 447-456.	4.2	89
290	PURIFICATION AND CHARACTERIZATION OF A LIPASE FROM LACTOBACILLUS PLANTARUM 2739. Journal of Food Biochemistry, 1996, 20, 227-246.	2.9	49
291	Volatile compound and organic acid productions by mixed wheat sour dough starters: influence of fermentation parameters and dynamics during baking. Food Microbiology, 1995, 12, 497-507.	4.2	113
292	Interaction between lactic acid bacteria and yeasts in sour-dough using a rheofermentometer. World Journal of Microbiology and Biotechnology, 1995, 11, 625-630.	3.6	92
293	The sourdough microflora. Interactions between lactic acid bacteria and yeasts: metabolism of amino acids. World Journal of Microbiology and Biotechnology, 1994, 10, 275-279.	3.6	137

Bioactive Peptides in Dairy Products. , 0, , 489-517.