
Pia Bernasconi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibodies against GluR3 peptides are not specific for Rasmussen's encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. Journal of Neuroimmunology, 2002, 131, 179-185.	1.1	151
2	Myasthenia Gravis (MG): Epidemiological Data and Prognostic Factors. Annals of the New York Academy of Sciences, 2003, 998, 413-423.	1.8	135
3	Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. Journal of the Neurological Sciences, 2003, 212, 31-36.	0.3	126
4	Transforming growth factor-β1 and fibrosis in congenital muscular dystrophies. Neuromuscular Disorders, 1999, 9, 28-33.	0.3	122
5	Immunomodulation of TGF-beta1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: Implications for antifibrotic therapy. Journal of Neuroimmunology, 2006, 175, 77-86.	1.1	114
6	Epsteinâ€Barr virus persistence and reactivation in myasthenia gravis thymus. Annals of Neurology, 2010, 67, 726-738.	2.8	103
7	Decorin and biglycan expression is differentially altered in several muscular dystrophies. Brain, 2005, 128, 2546-2555.	3.7	87
8	Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection–related epilepsy syndrome. Epilepsia Open, 2019, 4, 344-350.	1.3	85
9	Increased Expression of β-Chemokines in Muscle of Patients with Inflammatory Myopathies. Journal of Neuropathology and Experimental Neurology, 2000, 59, 164-169.	0.9	81
10	Hind limb muscle atrophy precedes cerebral neuronal degeneration in G93A-SOD1 mouse model of amyotrophic lateral sclerosis: A longitudinal MRI study. Experimental Neurology, 2011, 231, 30-37.	2.0	81
11	Etiology of myasthenia gravis: Innate immunity signature in pathological thymus. Autoimmunity Reviews, 2013, 12, 863-874.	2.5	75
12	Thymoma-associated myasthenia gravis: Outcome, clinical and pathological correlations in 197 patients on a 20-year experience. Journal of Neuroimmunology, 2008, 201-202, 237-244.	1.1	73
13	Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features. Cells, 2016, 5, 33.	1.8	69
14	Autoimmune mechanisms in myasthenia gravis. Current Opinion in Neurology, 2012, 25, 621-629.	1.8	62
15	Innate immunity in myasthenia gravis thymus: Pathogenic effects of Toll-like receptor 4 signaling on autoimmunity. Journal of Autoimmunity, 2014, 52, 74-89.	3.0	62
16	Increased Toll-Like Receptor 4 Expression in Thymus of Myasthenic Patients with Thymitis and Thymic Involution. American Journal of Pathology, 2005, 167, 129-139.	1.9	58
17	Myasthenia gravis: from autoantibodies to therapy. Current Opinion in Neurology, 2018, 31, 517-525.	1.8	58
18	Transforming Growth Factor β1 in Polymyositis and Dermatomyositis Correlates with Fibrosis but not with Mononuclear Cell Infiltrate. Journal of Neuropathology and Experimental Neurology, 1997, 56, 479-484.	0.9	57

#	Article	IF	CITATIONS
19	<i>LMNA</i> -associated myopathies. Neurology, 2014, 83, 1634-1644.	1.5	57
20	The thymus in myasthenia gravis: Site of "innate autoimmunity�. Muscle and Nerve, 2011, 44, 467-484.	1.0	56
21	Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis. Matrix Biology, 2018, 74, 77-100.	1.5	56
22	Allorecognition of human neural stem cells by peripheral blood lymphocytes despite low expression of MHC molecules: role of TGF-Â in modulating proliferation. International Immunology, 2007, 19, 1063-1074.	1.8	53
23	Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis. Histopathology, 2011, 59, 1215-1228.	1.6	53
24	Complete stable remission and autoantibody specificity in myasthenia gravis. Neurology, 2013, 80, 188-195.	1.5	53
25	Fibrogenic cytokines and extent of fibrosis in muscle of dogs with X-linked golden retriever muscular dystrophy. Neuromuscular Disorders, 2002, 12, 828-835.	0.3	51
26	Anti-MOG autoantibodies in Italian multiple sclerosis patients: specificity, sensitivity and clinical association. International Immunology, 2004, 16, 559-565.	1.8	51
27	Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage. Molecular Brain, 2015, 8, 5.	1.3	49
28	Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein–Barr virus infection. Immunobiology, 2016, 221, 516-527.	0.8	47
29	Autophagy, Inflammation and Innate Immunity in Inflammatory Myopathies. PLoS ONE, 2014, 9, e111490.	1.1	44
30	A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene. Journal of Human Genetics, 2013, 58, 581-587.	1.1	42
31	Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene. Frontiers in Physiology, 2014, 5, 525.	1.3	42
32	Dystrophin characterization in BMD patients: correlation of abnormal protein with clinical phenotype. Journal of the Neurological Sciences, 1995, 132, 146-155.	0.3	33
33	A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients. Immunobiology, 2016, 221, 1227-1236.	0.8	33
34	Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Experimental Neurology, 2014, 253, 91-101.	2.0	31
35	Circulating MyomiRs as Potential Biomarkers to Monitor Response to Nusinersen in Pediatric SMA Patients. Biomedicines, 2020, 8, 21.	1.4	30
36	Fibrosis and inflammation are greater in muscles of beta-sarcoglycan-null mouse than mdx mouse. Cell and Tissue Research, 2014, 356, 427-443.	1.5	29

#	Article	IF	CITATIONS
37	Tollâ€like receptors 7 and 9 in myasthenia gravis thymus: amplifiers of autoimmunity?. Annals of the New York Academy of Sciences, 2018, 1413, 11-24.	1.8	28
38	<scp>VAV</scp> 1 and <scp>BAFF</scp> , via <scp>NF</scp> κB pathway, are genetic risk factors for myasthenia gravis. Annals of Clinical and Translational Neurology, 2014, 1, 329-339.	1.7	27
39	FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice. Cells, 2019, 8, 279.	1.8	26
40	miR-146a in Myasthenia Gravis Thymus Bridges Innate Immunity With Autoimmunity and Is Linked to Therapeutic Effects of Corticosteroids. Frontiers in Immunology, 2020, 11, 142.	2.2	26
41	Inflammation and Epstein-Barr Virus Infection Are Common Features of Myasthenia Gravis Thymus: Possible Roles in Pathogenesis. Autoimmune Diseases, 2011, 2011, 1-17.	2.7	25
42	Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins. Oncotarget, 2015, 6, 7424-7437.	0.8	25
43	Elevated TGF β2 serum levels in Emery-Dreifuss Muscular Dystrophy: Implications for myocyte and tenocyte differentiation and fibrogenic processes. Nucleus, 2018, 9, 337-349.	0.6	25
44	Pharmacogenetics of myotonic hNav1.4 sodium channel variants situated near the fast inactivation gate. Pharmacological Research, 2019, 141, 224-235.	3.1	25
45	Major histocompatibility complex class II molecule expression on muscle cells is regulated by differentiation: implications for the immunopathogenesis of muscle autoimmune diseases. Journal of Neuroimmunology, 1996, 68, 53-60.	1.1	24
46	Multidisciplinary study of a new CICâ€1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies. FASEB Journal, 2016, 30, 3285-3295.	0.2	24
47	Italian recommendations for diagnosis and management of congenital myasthenic syndromes. Neurological Sciences, 2019, 40, 457-468.	0.9	24
48	Epstein-Barr virus in tumor-infiltrating B cells of myasthenia gravis thymoma: an innocent bystander or an autoimmunity mediator?. Oncotarget, 2017, 8, 95432-95449.	0.8	23
49	The expression of co-stimulatory and accessory molecules on cultured human muscle cells is not dependent on stimulus by pro-inflammatory cytokines: relevance for the pathogenesis of inflammatory myopathy. Journal of Neuroimmunology, 1998, 85, 52-58.	1.1	22
50	A New Thiopurine Sâ€Methyltransferase Haplotype Associated With Intolerance to Azathioprine. Journal of Clinical Pharmacology, 2013, 53, 67-74.	1.0	21
51	The Kinesin Superfamily Motor Protein KIF4 Is Associated With Immune Cell Activation in Idiopathic Inflammatory Myopathies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 624-632.	0.9	20
52	A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2017, 293, 43-52.	2.0	19
53	Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia. Neurogenetics, 2017, 18, 219-225.	0.7	19
54	Agingâ€associated genes and <i>letâ€7</i> microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy. FASEB Journal, 2019, 33, 7155-7167.	0.2	19

#	Article	IF	CITATIONS
55	Human adult skeletal muscle stem cells differentiate into cardiomyocyte phenotype in vitro. Experimental Cell Research, 2008, 314, 366-376.	1.2	17
56	New phenotype and neonatal onset of sodium channel myotonia in a child with a novel mutation of SCN4A gene. Brain and Development, 2015, 37, 891-893.	0.6	17
57	MicroRNA signature associated with treatment response in myasthenia gravis: A further step towards precision medicine. Pharmacological Research, 2019, 148, 104388.	3.1	16
58	T-Cell Infiltration in Polymyositis Is Characterized by Coexpression of Cytotoxic and T-Cell-Activating Cytokine Transcripts. Annals of the New York Academy of Sciences, 1995, 756, 418-420.	1.8	15
59	BDNF and its receptors in human myasthenic thymus: Implications for cell fate in thymic pathology. Journal of Neuroimmunology, 2008, 197, 128-139.	1.1	14
60	Hyperexcitability in Cultured Cortical Neuron Networks from the G93A-SOD1 Amyotrophic Lateral Sclerosis Model Mouse and its Molecular Correlates. Neuroscience, 2019, 416, 88-99.	1.1	14
61	Dysregulation of Muscle-Specific MicroRNAs as Common Pathogenic Feature Associated with Muscle Atrophy in ALS, SMA and SBMA: Evidence from Animal Models and Human Patients. International Journal of Molecular Sciences, 2021, 22, 5673.	1.8	14
62	Up-regulation of Toll-like receptors 7 and 9 and its potential implications in the pathogenic mechanisms of <i>LMNA</i> -related myopathies. Nucleus, 2018, 9, 398-409.	0.6	13
63	Next-generation sequencing application to investigate skeletal muscle channelopathies in a large cohort of Italian patients. Neuromuscular Disorders, 2021, 31, 336-347.	0.3	13
64	Identification of previously unreported mutations in CHRNA1, CHRNE and RAPSN genes in three unrelated Italian patients with congenital myasthenic syndromes. Journal of Neurology, 2010, 257, 1119-1123.	1.8	11
65	Expression of Transforming Growth Factor-β1 in Thymus of Myasthenia Gravis Patients. Annals of the New York Academy of Sciences, 2003, 998, 278-283.	1.8	9
66	Epsteinâ€barr virus in myasthenia gravis thymus: A matter of debate. Annals of Neurology, 2011, 70, 519-519.	2.8	9
67	Identification of a gene expression signature in peripheral blood of multiple sclerosis patients treated with disease-modifying therapies. Clinical Immunology, 2016, 173, 133-146.	1.4	9
68	VAPB depletion alters neuritogenesis and phosphoinositide balance in motoneuron-like cells: relevance to VAPB-linked ALS. Journal of Cell Science, 2019, 132, .	1.2	9
69	Cytokine Profile in Striated Muscle Laminopathies: New Promising Biomarkers for Disease Prediction. Cells, 2020, 9, 1532.	1.8	8
70	The empowerment of translational research: lessons from laminopathies. Orphanet Journal of Rare Diseases, 2012, 7, 37.	1.2	7
71	Transcriptional and epigenetic analyses of the DMD locus reveal novel cis ‑acting DNA elements that govern muscle dystrophin expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 1138-1147.	0.9	7
72	Autoimmune Encephalitis and CSF Anti-GluR3 Antibodies in an MS Patient after Alemtuzumab Treatment. Brain Sciences, 2019, 9, 299.	1.1	7

#	Article	IF	CITATIONS
73	Clinical and Molecular Spectrum of Myotonia and Periodic Paralyses Associated With Mutations in SCN4A in a Large Cohort of Italian Patients. Frontiers in Neurology, 2020, 11, 646.	1.1	7
74	A novel ABCC6 haplotype is associated with azathioprine drug response in myasthenia gravis. Pharmacogenetics and Genomics, 2017, 27, 51-56.	0.7	5
75	Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model. PLoS ONE, 2016, 11, e0161646.	1.1	5
76	Biobank of Cells, Tissues and DNA from Patients with Neuromuscular Diseases: An Indispensable link between Clinical Centers and the Scientific Community. Open Journal of Bioresources, 2017, 4, .	1.5	4
77	Congenital myasthenic syndrome: phenotypic variability in patients harbouring p.T159P mutation in gene. Acta Myologica, 2017, 36, 28-32.	1.5	4
78	Rasmussen's encephalitis: update on pathogenesis and treatment. Expert Review of Neurotherapeutics, 2003, 3, 835-843.	1.4	3
79	Analysis of SjTREC Levels in Thymus from MG Patients and Normal Children. Annals of the New York Academy of Sciences, 2003, 998, 270-274.	1.8	2
80	Autoimmune Frontotemporal Dementia. Alzheimer Disease and Associated Disorders, 2017, 31, 259-262.	0.6	2
81	Pharmacogenetic and pharmaco-miR biomarkers for tailoring and monitoring myasthenia gravis treatments. Expert Review of Precision Medicine and Drug Development, 2020, 5, 317-329.	0.4	2
82	T-Cell Receptor-CDR3 Sequences of Polymyositis Muscle-Infiltrating T-Lymphocytes Indicate a Conventional Antigen as Target. Annals of the New York Academy of Sciences, 1995, 756, 414-417.	1.8	1
83	Idiopathic Inflammatory Myopathies: A Review of Immunopathological Features and Current Models of Pathogenesis. , 0, , .		1
84	Complement Activation Profile in Myasthenia Gravis Patients: Perspectives for Tailoring Anti-Complement Therapy. Biomedicines, 2022, 10, 1360.	1.4	1
85	Central core disease and susceptibility to malignant hyperthermia in a single family. Journal of Neurology, 2009, 256, 1161-1163.	1.8	0
86	Teaching Video Neuro <i>Images</i> : Clinical course of infantile ascending hereditary spastic paralysis. Neurology, 2014, 82, e61.	1.5	0
87	Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity. , 0, , .		0
88	Inflammatory Myopathies. , 2006, , 119-134.		0