
Jinming Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597335/publications.pdf Version: 2024-02-01

LINMING CAL

#	Article	IF	CITATIONS
1	Magnetism engineering of nanographene: An enrichment strategy by co-depositing diverse precursors on Au(111). Chinese Chemical Letters, 2023, 34, 107450.	9.0	4
2	Energy band engineering via "Bite―defect located on N = 8 armchair graphene nanoribbons. Nano Research, 2022, 15, 653-658.	10.4	16
3	Se-concentration dependent superstructure transformations of CuSe monolayer on Cu(111) substrate. 2D Materials, 2022, 9, 015017.	4.4	5
4	Enhancement of the low-temperature catalytic graphitization of polyacrylonitrile by incorporating Cu nanostructures as plasmonic photocatalyst. Journal of Materials Science, 2022, 57, 1703-1713.	3.7	3
5	Chemical vapor deposition growth behavior of graphene. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 136-143.	4.9	3
6	Chiral structures of 6,12-dibromochrysene on Au(111) and Cu(111) surfaces. Chinese Chemical Letters, 2022, 33, 5142-5146.	9.0	5
7	Two-dimensional semiconductor materials with high stability and electron mobility in group-11 chalcogenide compounds: MNX (M = Cu, Ag, Au; N = Cu, Ag, Au; X = S, Se, Te; M ≠N). Nanoscale, 2022, 14, 4271-4280.	5.6	6
8	Ultrathin g-PAN/PANI-encapsulated Cu nanoparticles decorated on SrTiO ₃ with high stability as an efficient photocatalyst for the H ₂ evolution and degradation of 4-nitrophenol under visible-light irradiation. Catalysis Science and Technology, 2022, 12, 2482-2489.	4.1	4
9	Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society, 2022, 144, 5042-5050.	13.7	54
10	Study on the mechanism of NOx reduction by NH3-SCR over Mn and M(M=V,Ti) co-doped CoCr2O4 catalyst. Molecular Catalysis, 2022, 524, 112283.	2.0	2
11	Onâ€Surface Synthesis of a Nitrogenâ€Doped Graphene Nanoribbon with Multiple Substitutional Sites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
12	Controllable synthesis of anatase titanium dioxide nanowires with high-temperature stability. Journal of Materials Science, 2022, 57, 9164-9171.	3.7	1
13	On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. Journal of Chemical Physics, 2022, 157, .	3.0	4
14	Two dimensional Janus SGalnSe(SeGalnS)/PtSe2 van der Waals heterostructures for optoelectronic and photocatalytic water splitting applications. International Journal of Hydrogen Energy, 2022, 47, 28833-28844.	7.1	7
15	Probing the charged defects in single-layer WS2 at atomic level. Materials Today Physics, 2022, 27, 100773.	6.0	1
16	Revealing the high-resolution structures and electronic properties of ZnTPP and its derivatives formed by thermally induced cyclodehydrogenation on Au(111). Physical Chemistry Chemical Physics, 2021, 23, 18930-18935.	2.8	2
17	Identification and electronic characterization of four cyclodehydrogenation products of H ₂ TPP molecules on Au(111). Physical Chemistry Chemical Physics, 2021, 23, 11784-11788.	2.8	10
18	The van der Waals CdO/PtS2 heterostructures for photocatalytic water splitting with excellent carrier separation and light absorption. New Journal of Chemistry, 2021, 45, 17699-17708.	2.8	9

JINMING CAI

#	Article	IF	CITATIONS
19	Electronic, mechanical, optical and photocatalytic properties of two-dimensional Janus XGaInY (X, Y ;=) Tj ETQq	1 1 9.7843	314 rgBT /Ove
20	Fabrication of diverse morphologies of MoS2 nanomaterials with a single-temperature-zone CVD system. MRS Communications, 2021, 11, 372-376.	1.8	2
21	Topological-Defect-Induced Superstructures on Graphite Surface. Chinese Physics Letters, 2021, 38, 027201.	3.3	4
22	Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores. Journal of Materials Science, 2021, 56, 10406-10413.	3.7	7
23	Toxicity of GO and rGO suspension against P. acnes: physical puncture and oxidative stress. Materials Research Express, 2021, 8, 045402.	1.6	Ο
24	Indirect-direct band gap transition driven by strain in semiconducting Cu2Se monolayer. Materials Research Express, 2021, 8, 045003.	1.6	2
25	Study on the Mechanism of Selective Catalytic Reduction of NO _{<i>x</i>} by NH ₃ over Mn-Doped CoCr ₂ O ₄ . Journal of Physical Chemistry C, 2021, 125, 14228-14238.	3.1	14
26	Recent Advances in Graphene Electronic Skin and its Future Prospects. ChemNanoMat, 2021, 7, 982-997.	2.8	13
27	First-Principles Study of Hydrogen Storage of Sc-Modified Semiconductor Covalent Organic Framework-1. ACS Omega, 2021, 6, 21985-21993.	3.5	10
28	Controllable preparations and anti-corrosion properties of reduced graphene oxide films by binder-free electrophoretic deposition. Applied Surface Science, 2021, 563, 150295.	6.1	9
29	In-situ conversion of amorphous carbon to graphene enhances the oxidation resistance of dendritic copper powder. Diamond and Related Materials, 2021, 120, 108695.	3.9	2
30	Short-Channel Double-Gate FETs with Atomically Precise Graphene Nanoribbons. , 2021, , .		5
31	Structural stabilities, electronic structures, photocatalysis and optical properties of γ-GeN and α-SnP monolayers: a first-principles study. Materials Research Express, 2021, 8, 125010.	1.6	1
32	Tuning the Electronic Properties of Atomically Precise Graphene Nanoribbons by Bottomâ€Up Fabrication. ChemNanoMat, 2020, 6, 493-515.	2.8	10
33	On-Surface Synthesis and Characterization of Polythiophene Chains. Journal of Physical Chemistry C, 2020, 124, 764-768.	3.1	6
34	Two-dimensional hexagonal Zn ₃ Si ₂ monolayer: Dirac cone material and Dirac half-metallic manipulation*. Chinese Physics B, 2020, 29, 087103.	1.4	2
35	Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 118101.	0.5	5
36	On-surface synthesis of one-type pore single-crystal porous covalent organic frameworks. Chemical Communications, 2019, 55, 10800-10803.	4.1	9

JINMING CAI

#	Article	IF	CITATIONS
37	The first principle study of the effect of Co dopant and C/Cu vacancy defect on the interfacial bonding of graphene-copper composites. Materials Research Express, 2019, 6, 095621.	1.6	2
38	Efficient synthesis of graphene oxide by Hummers method assisted with an electric field. Materials Research Express, 2019, 6, 055602.	1.6	8
39	The improvement of thermal conductivity in silica gel composite employing graphene nano-particles. Modern Physics Letters B, 2019, 33, 1950147.	1.9	1
40	Half-metallicity in a honeycomb-kagome-lattice Mg ₃ Si ₂ monolayer with carrier doping. Materials Research Express, 2019, 6, 075911.	1.6	7
41	Graphene-like Be ₃ <i>X</i> ₂ (<i>X</i> = C, Si, Ge, Sn): A new family of two-dimensional topological insulators. Chinese Physics B, 2019, 28, 037101.	1.4	13
42	The effect of copper substrate's roughness on graphene growth process via PECVD. Materials Research Express, 2018, 5, 045604.	1.6	1
43	Controllable Density of Atomic Bromine in a Two-Dimensional Hydrogen Bond Network. Journal of Physical Chemistry C, 2018, 122, 25681-25684.	3.1	6
44	Synthesize monolayer graphene on SiO2/Si substrate with copper-vapor-assisted CVD method. Materials Research Express, 2018, 5, 125601.	1.6	2
45	Significant improvement in the interface thermal conductivity of graphene-nanoplatelets/silicone composite. Materials Research Express, 2018, 5, 055606.	1.6	4
46	Research Progress of On-surface Chemical Reaction for Organics in Ultra-High Vacuum. Acta Chimica Sinica, 2018, 76, 585.	1.4	2
47	Probing optical excitations in chevron-like armchair graphene nanoribbons. Nanoscale, 2017, 9, 18326-18333.	5.6	19
48	On-Surface Cyclization of <i>ortho</i> -Dihalotetracenes to Four- and Six-Membered Rings. Journal of the American Chemical Society, 2017, 139, 17617-17623.	13.7	68
49	Fabrication and electrical engineering of graphene nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 218103.	0.5	5
50	Building Pentagons into Graphenic Structures by On-Surface Polymerization and Aromatic Cyclodehydrogenation of Phenyl-Substituted Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry C, 2016, 120, 17588-17593.	3.1	24
51	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900.	31.5	528
52	Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 2014, 5, 4253.	12.8	155
53	Termini of Bottom-Up Fabricated Graphene Nanoribbons. Journal of the American Chemical Society, 2013, 135, 2060-2063.	13.7	214
54	Modulation of charge transport properties of reduced graphene oxide by submonolayer physisorption of an organic dye. Organic Electronics, 2013, 14, 1787-1792.	2.6	17

JINMING CAI

#	Article	IF	CITATIONS
55	Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano, 2012, 6, 6930-6935.	14.6	410
56	Local field emission of electrons from an individual boron nanowire at nanometer electrode separation. Applied Surface Science, 2012, 258, 2149-2152.	6.1	4
57	Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons. ACS Nano, 2012, 6, 2020-2025.	14.6	169
58	Measuring thermoelectric property of nano-heterostructure. Chinese Physics B, 2011, 20, 107301.	1.4	1
59	Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466, 470-473.	27.8	3,144
60	Electric dipolar interaction assisted growth of single crystalline organic thin films. Chinese Physics B, 2010, 19, 067101.	1.4	2
61	Thermoelectric-transport in metal/graphene/metal hetero-structure. Chinese Physics B, 2010, 19, 037202.	1.4	10
62	Tunable interfacial properties of epitaxial graphene on metal substrates. Applied Physics Letters, 2010, 96, .	3.3	118
63	Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity. Journal of the American Chemical Society, 2010, 132, 16669-16676.	13.7	449
64	Boron Nanowires for Flexible Electronics and Field Emission. , 2009, , .		2
65	Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 2009, 47, 922-925.	10.3	1,199
66	Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chemical Communications, 2009, , 6919.	4.1	610
67	Epitaxial Growth of Quinacridone Derivative on Ag(110) Studied by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2008, 112, 7138-7144.	3.1	4
68	Cathodoluminescent and electrical properties of an individual ZnO nanowire with oxygen vacancies. Chinese Physics B, 2008, 17, 3444-3447.	1.4	14
69	Boron nanowires for flexible electronics. Applied Physics Letters, 2008, 93, .	3.3	33
70	Low-Dimensional Forest-Like and Desert-Like Fractal Patterns Formed in a DDAN Molecular System. Chinese Physics Letters, 2007, 24, 2918-2921.	3.3	3
71	Role of Lateral Alkyl Chains in Modulation of Molecular Structures on Metal Surfaces. Physical Review Letters, 2006, 96, 226101.	7.8	51
72	Multiple functional base-induced highly ordered graphene aerogels. Journal of Materials Chemistry C, 0, , .	5.5	5

#	Article	IF	CITATIONS
73	Onâ€surface Synthesis of Nitrogenâ€doped Graphene Nanoribbon with Multiple Substitutional Sites. Angewandte Chemie, 0, , .	2.0	Ο