Gilbert Laporte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597334/publications.pdf Version: 2024-02-01

		2795	5227
353	32,394	94	165
papers	citations	h-index	g-index
359	359	359	10633
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Tabu Search Heuristic for the Vehicle Routing Problem. Management Science, 1994, 40, 1276-1290.	2.4	918
2	The Pollution-Routing Problem. Transportation Research Part B: Methodological, 2011, 45, 1232-1250.	2.8	851
3	Fifty Years of Vehicle Routing. Transportation Science, 2009, 43, 408-416.	2.6	717
4	A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 1997, 30, 105-119.	1.6	667
5	The dial-a-ride problem: models and algorithms. Annals of Operations Research, 2007, 153, 29-46.	2.6	630
6	A review of recent research on green road freight transportation. European Journal of Operational Research, 2014, 237, 775-793.	3.5	595
7	Static pickup and delivery problems: aÂclassification scheme and survey. Top, 2007, 15, 1-31.	1.1	553
8	The integer L-shaped method for stochastic integer programs with complete recourse. Operations Research Letters, 1993, 13, 133-142.	0.5	547
9	Stochastic vehicle routing. European Journal of Operational Research, 1996, 88, 3-12.	3.5	522
10	A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological, 2003, 37, 579-594.	2.8	514
11	Dynamic pickup and delivery problems. European Journal of Operational Research, 2010, 202, 8-15.	3.5	511
12	An adaptive large neighborhood search heuristic for the Pollution-Routing Problem. European Journal of Operational Research, 2012, 223, 346-359.	3.5	508
13	Thirty Years of Inventory Routing. Transportation Science, 2014, 48, 1-19.	2.6	411
14	Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters, 1991, 10, 27-36.	0.5	399
15	The bi-objective Pollution-Routing Problem. European Journal of Operational Research, 2014, 232, 464-478.	3.5	390
16	A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Computing, 2001, 27, 1641-1653.	1.3	360
17	The Vehicle Routing Problem with Stochastic Travel Times. Transportation Science, 1992, 26, 161-170.	2.6	331
18	A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem. Transportation Science, 2007, 41, 382-391.	2.6	329

#	Article	IF	CITATIONS
19	The selective travelling salesman problem. Discrete Applied Mathematics, 1990, 26, 193-207.	0.5	326
20	Models and Tabu Search Heuristics for the Berth-Allocation Problem. Transportation Science, 2005, 39, 526-538.	2.6	320
21	A comparative analysis of several vehicle emission models for road freight transportation. Transportation Research, Part D: Transport and Environment, 2011, 16, 347-357.	3.2	307
22	Arc Routing Problems, Part II: The Rural Postman Problem. Operations Research, 1995, 43, 399-414.	1.2	303
23	Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models. Transportation Research Part B: Methodological, 2017, 103, 158-187.	2.8	301
24	The multi-depot vehicle routing problem with inter-depot routes. European Journal of Operational Research, 2007, 176, 756-773.	3.5	288
25	The time-dependent pollution-routing problem. Transportation Research Part B: Methodological, 2013, 56, 265-293.	2.8	287
26	Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research, 2003, 151, 1-11.	3.5	267
27	Arc Routing Problems, Part I: The Chinese Postman Problem. Operations Research, 1995, 43, 231-242.	1.2	263
28	A Tabu Search Algorithm for a Routing and Container Loading Problem. Transportation Science, 2006, 40, 342-350.	2.6	243
29	Tramp ship routing and scheduling with speed optimization. Transportation Research Part C: Emerging Technologies, 2011, 19, 853-865.	3.9	240
30	Vehicle Routing with Stochastic Demands: Properties and Solution Frameworks. Transportation Science, 1989, 23, 166-176.	2.6	237
31	A Tabu Search Heuristic for the Vehicle Routing Problem with Stochastic Demands and Customers. Operations Research, 1996, 44, 469-477.	1.2	237
32	Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks, 2007, 49, 258-272.	1.6	236
33	An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers. Transportation Science, 1995, 29, 143-155.	2.6	229
34	A Tabu Search Heuristic for the Capacitated arc Routing Problem. Operations Research, 2000, 48, 129-135.	1.2	229
35	What you should know about the vehicle routing problem. Naval Research Logistics, 2007, 54, 811-819.	1.4	226
36	An IntegerL-Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands. Operations Research, 2002, 50, 415-423.	1.2	225

#	Article	IF	CITATIONS
37	Drone-aided routing: A literature review. Transportation Research Part C: Emerging Technologies, 2020, 120, 102762.	3.9	225
38	50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives. Transportation Science, 2016, 50, 3-22.	2.6	223
39	Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transportation Research Part B: Methodological, 2004, 38, 669-685.	2.8	220
40	A tabu search heuristic and adaptive memory procedure for political districting. European Journal of Operational Research, 2003, 144, 12-26.	3.5	217
41	Chapter 6 Vehicle Routing. Handbooks in Operations Research and Management Science, 2007, , 367-428.	0.6	211
42	The fleet size and mix pollution-routing problem. Transportation Research Part B: Methodological, 2014, 70, 239-254.	2.8	207
43	An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Computers and Operations Research, 2012, 39, 728-735.	2.4	203
44	Single-line rail rapid transit timetabling under dynamic passenger demand. Transportation Research Part B: Methodological, 2014, 70, 134-150.	2.8	203
45	The Covering Tour Problem. Operations Research, 1997, 45, 568-576.	1.2	188
46	Models and exact solutions for a class of stochastic location-routing problems. European Journal of Operational Research, 1989, 39, 71-78.	3.5	187
47	Stochastic uncapacitated hub location. European Journal of Operational Research, 2011, 212, 518-528.	3.5	187
48	Vehicle routing with split deliveries. Discrete Applied Mathematics, 1994, 50, 239-254.	0.5	184
49	Thirty years of heterogeneous vehicle routing. European Journal of Operational Research, 2016, 249, 1-21.	3.5	184
50	A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites. European Journal of Operational Research, 2007, 177, 750-762.	3.5	183
51	The inventory-routing problem with transshipment. Computers and Operations Research, 2012, 39, 2537-2548.	2.4	176
52	Vehicle Routeing with Multiple Use of Vehicles. Journal of the Operational Research Society, 1996, 47, 1065-1070.	2.1	174
53	Exact formulations and algorithm for the train timetabling problem with dynamic demand. Computers and Operations Research, 2014, 44, 66-74.	2.4	174
54	A concise guide to existing and emerging vehicle routing problem variants. European Journal of Operational Research, 2020, 286, 401-416.	3.5	171

#	Article	IF	CITATIONS
55	A comparative analysis of several asymmetric traveling salesman problem formulations. Computers and Operations Research, 2009, 36, 637-654.	2.4	168
56	A Tabu search heuristic for the vehicle routing problem with twoâ€dimensional loading constraints. Networks, 2008, 51, 4-18.	1.6	167
57	Dynamic transportation of patients in hospitals. OR Spectrum, 2010, 32, 77-107.	2.1	165
58	A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time Windows. Operations Research, 1998, 46, 330-335.	1.2	160
59	The Dial-a-Ride Problem (DARP): Variants, modeling issues and algorithms. 4or, 2003, 1, 89.	1.0	159
60	A Priori Optimization of the Probabilistic Traveling Salesman Problem. Operations Research, 1994, 42, 543-549.	1.2	158
61	A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Research Logistics, 2006, 53, 45-59.	1.4	158
62	Consistency in multi-vehicle inventory-routing. Transportation Research Part C: Emerging Technologies, 2012, 24, 270-287.	3.9	155
63	Optimal joint replenishment, delivery and inventory management policies for perishable products. Computers and Operations Research, 2014, 47, 42-52.	2.4	155
64	Benders Decomposition for Large-Scale Uncapacitated Hub Location. Operations Research, 2011, 59, 1477-1490.	1.2	152
65	The exact solution of several classes of inventory-routing problems. Computers and Operations Research, 2013, 40, 558-565.	2.4	152
66	A tabu search heuristic for the quay crane scheduling problem. Journal of Scheduling, 2007, 10, 327-336.	1.3	143
67	The electric vehicle routing problem with energy consumption uncertainty. Transportation Research Part B: Methodological, 2019, 126, 225-255.	2.8	142
68	The Delivery Man Problem and Cumulative Matroids. Operations Research, 1993, 41, 1055-1064.	1.2	141
69	The Ring Star Problem: Polyhedral analysis and exact algorithm. Networks, 2004, 43, 177-189.	1.6	137
70	The Integrated Production and Transportation Scheduling Problem for a Product with a Short Lifespan. INFORMS Journal on Computing, 2008, 20, 21-33.	1.0	137
71	Electric Vehicle Routing Problem with Time-Dependent Waiting Times at Recharging Stations. Computers and Operations Research, 2019, 107, 77-94.	2.4	135
72	A branch-and-cut algorithm for the undirected selective traveling salesman problem. Networks, 1998, 32, 263-273.	1.6	132

#	Article	IF	CITATIONS
73	Improved formulations and algorithmic components for the electric vehicle routing problem with nonlinear charging functions. Computers and Operations Research, 2019, 104, 256-294.	2.4	129
74	A branch-and-cut algorithm for the multi-product multi-vehicle inventory-routing problem. International Journal of Production Research, 2013, 51, 7156-7169.	4.9	128
75	A note on the lifted Miller–Tucker–Zemlin subtour elimination constraints for the capacitated vehicle routing problem. European Journal of Operational Research, 2004, 158, 793-795.	3.5	125
76	An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time. Computers and Operations Research, 2017, 86, 41-53.	2.4	125
77	Evaluating passenger robustness in a rail transit network. Transportation Research Part C: Emerging Technologies, 2012, 20, 34-46.	3.9	124
78	The impact of depot location, fleet composition and routing on emissions in city logistics. Transportation Research Part B: Methodological, 2016, 84, 81-102.	2.8	124
79	Scheduling technicians and tasks in a telecommunications company. Journal of Scheduling, 2010, 13, 393-409.	1.3	123
80	A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Computers and Operations Research, 2014, 52, 269-281.	2.4	123
81	Exact Solution to a Location Problem with Stochastic Demands. Transportation Science, 1994, 28, 95-103.	2.6	117
82	The static bicycle relocation problem with demand intervals. European Journal of Operational Research, 2014, 238, 451-457.	3.5	117
83	A metaheuristic for the time-dependent pollution-routing problem. European Journal of Operational Research, 2017, 259, 972-991.	3.5	117
84	A heuristic for the multi-period petrol station replenishment problem. European Journal of Operational Research, 2008, 191, 295-305.	3.5	113
85	Improved solutions for inventory-routing problems through valid inequalities and input ordering. International Journal of Production Economics, 2014, 155, 391-397.	5.1	112
86	Vehicle Routing and Location Routing with Intermediate Stops: A Review. Transportation Science, 2019, 53, 319-343.	2.6	112
87	The petrol station replenishment problem with time windows. Computers and Operations Research, 2009, 36, 919-935.	2.4	109
88	The capacitated vehicle routing problem with stochastic demands and time windows. Computers and Operations Research, 2011, 38, 1775-1783.	2.4	108
89	The dynamic multi-period vehicle routing problem. Computers and Operations Research, 2010, 37, 1615-1623.	2.4	107
90	The green mixed fleet vehicle routing problem with partial battery recharging and time windows. Computers and Operations Research, 2019, 101, 183-199.	2.4	107

#	Article	IF	CITATIONS
91	An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows. European Journal of Operational Research, 2019, 276, 971-982.	3.5	104
92	An Adaptive Large Neighbourhood Search Heuristic for the Capacitated Arc-Routing Problem with Stochastic Demands. Transportation Science, 2010, 44, 125-135.	2.6	103
93	Heuristics for the multi-vehicle covering tour problem. Computers and Operations Research, 2000, 27, 29-42.	2.4	100
94	Variable Neighborhood Search for the Pickup and Delivery Traveling Salesman Problem with LIFO Loading. INFORMS Journal on Computing, 2007, 19, 618-632.	1.0	99
95	An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling. Computers and Operations Research, 2018, 100, 12-25.	2.4	98
96	Generalized travelling salesman problem through n sets of nodes: the asymmetrical case. Discrete Applied Mathematics, 1987, 18, 185-197.	0.5	97
97	A simulation-based heuristic for the electric vehicle routing problem with time windows and stochastic waiting times at recharging stations. Computers and Operations Research, 2021, 125, 105060.	2.4	97
98	Capacitated Vehicle Routing on Trees. Operations Research, 1991, 39, 616-622.	1.2	95
99	A review of vehicle routing with simultaneous pickup and delivery. Computers and Operations Research, 2020, 122, 104987.	2.4	95
100	Designing collection routes through bank branches. Computers and Operations Research, 1993, 20, 783-791.	2.4	93
101	A hybrid evolutionary algorithm for heterogeneous fleet vehicle routing problems with time windows. Computers and Operations Research, 2015, 64, 11-27.	2.4	93
102	Robust Inventory Routing Under Demand Uncertainty. Transportation Science, 2012, 46, 327-340.	2.6	92
103	Charge scheduling for electric freight vehicles. Transportation Research Part B: Methodological, 2018, 115, 246-269.	2.8	92
104	Improvement Procedures for the Undirected Rural Postman Problem. INFORMS Journal on Computing, 1999, 11, 53-62.	1.0	91
105	Designing delivery districts for the vehicle routing problem with stochastic demands. European Journal of Operational Research, 2007, 180, 997-1010.	3.5	91
106	Shared mobility systems: an updated survey. Annals of Operations Research, 2018, 271, 105-126.	2.6	91
107	Quality of service in dial-a-ride operations. Computers and Industrial Engineering, 2009, 56, 1721-1734.	3.4	89
108	The static bike relocation problem with multiple vehicles and visits. European Journal of Operational Research, 2018, 264, 508-523.	3.5	89

#	Article	IF	CITATIONS
109	Combining multicriteria analysis and tabu search for dial-a-ride problems. Transportation Research Part B: Methodological, 2013, 52, 1-16.	2.8	88
110	The single vehicle routing problem with deliveries and selective pickups. Computers and Operations Research, 2008, 35, 2908-2924.	2.4	87
111	Rich routing problems arising in supply chain management. European Journal of Operational Research, 2013, 224, 435-448.	3.5	87
112	Logistics service network design for humanitarian response in East Africa. Omega, 2018, 74, 1-14.	3.6	86
113	Analysis of an exact algorithm for the vessel speed optimization problem. Networks, 2013, 62, 132-135.	1.6	84
114	Loop based facility planning and material handling. European Journal of Operational Research, 2005, 164, 1-11.	3.5	83
115	An adaptive neighborhood search metaheuristic for the integrated railway rapid transit network design and line planning problem. Computers and Operations Research, 2017, 78, 1-14.	2.4	83
116	Hamiltonian location problems. European Journal of Operational Research, 1983, 12, 82-89.	3.5	81
117	A Covering Tour Model for Planning Mobile Health Care Facilities in SuhumDistrict, Ghama. Journal of Regional Science, 1998, 38, 621-638.	2.1	81
118	A branch-and-cut algorithm for the Undirected Rural Postman Problem. Mathematical Programming, 2000, 87, 467-481.	1.6	81
119	Shared mobility systems. 4or, 2015, 13, 341-360.	1.0	81
120	A multi-compartment vehicle routing problem arising in the collection of olive oil in Tunisia. Omega, 2015, 51, 1-10.	3.6	81
121	Green technology adoption for fleet deployment in a shipping network. Transportation Research Part B: Methodological, 2020, 139, 388-410.	2.8	80
122	The fleet size and mix location-routing problem with time windows: Formulations and a heuristic algorithm. European Journal of Operational Research, 2016, 248, 33-51.	3.5	78
123	Synchronized arc routing for snow plowing operations. Computers and Operations Research, 2012, 39, 1432-1440.	2.4	77
124	Multi-level facility location problems. European Journal of Operational Research, 2018, 267, 791-805.	3.5	77
125	Vehicle routing with backhauls: Review and research perspectives. Computers and Operations Research, 2018, 91, 79-91.	2.4	77
126	Heuristics for dynamic and stochastic inventory-routing. Computers and Operations Research, 2014, 52, 55-67.	2.4	76

#	Article	IF	CITATIONS
127	Resource constrained routing and scheduling: Review and research prospects. European Journal of Operational Research, 2017, 263, 737-754.	3.5	76
128	The electric vehicle routing problem with shared charging stations. International Transactions in Operational Research, 2019, 26, 1211-1243.	1.8	76
129	General solutions to the single vehicle routing problem with pickups and deliveries. European Journal of Operational Research, 2007, 180, 568-584.	3.5	75
130	A Hybrid Tabu Search and Constraint Programming Algorithm for the Dynamic Dial-a-Ride Problem. INFORMS Journal on Computing, 2012, 24, 343-355.	1.0	75
131	A game theoretic framework for the robust railway transit network design problem. Transportation Research Part B: Methodological, 2010, 44, 447-459.	2.8	73
132	An adaptive large neighborhood search for the discrete and continuous Berth allocation problem. Computers and Operations Research, 2016, 70, 140-154.	2.4	72
133	Crowd-shipping with time windows and transshipment nodes. Computers and Operations Research, 2020, 113, 104806.	2.4	71
134	The Pickup And Delivery Problem With Time Windows And Transshipment. Infor, 2006, 44, 217-227.	0.5	70
135	A branchâ€andâ€cut algorithm for the pickup and delivery traveling salesman problem with LIFO loading. Networks, 2010, 55, 46-59.	1.6	69
136	A large neighbourhood search heuristic for ship routing and scheduling with split loads. Computers and Operations Research, 2011, 38, 474-483.	2.4	69
137	A population-based metaheuristic for the pickup and delivery problem with time windows and LIFO loading. Computers and Operations Research, 2015, 62, 23-35.	2.4	67
138	Modeling and solving a multimodal transportation problem with flexibleâ€ŧime and scheduled services. Networks, 2011, 57, 53-68.	1.6	66
139	A heuristic for the location of a rapid transit line. Computers and Operations Research, 2002, 29, 1-12.	2.4	65
140	Long-Haul Vehicle Routing and Scheduling with Working Hour Rules. Transportation Science, 2013, 47, 81-107.	2.6	65
141	Integrated Railway Rapid Transit Network Design and Line Planning problem with maximum profit. Transportation Research, Part E: Logistics and Transportation Review, 2019, 127, 1-30.	3.7	65
142	Maximizing Trip Coverage in the Location of a Single Rapid Transit Alignment. Annals of Operations Research, 2005, 136, 49-63.	2.6	64
143	The traveling salesman problem with pickup and delivery: polyhedral results and a branch-and-cut algorithm. Mathematical Programming, 2010, 121, 269-305.	1.6	64
144	Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem. European Journal of Operational Research, 2014, 233, 234-245.	3.5	64

#	Article	IF	CITATIONS
145	Chapter 7 Transportation on Demand. Handbooks in Operations Research and Management Science, 2007, 14, 429-466.	0.6	63
146	An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines. Transportation Science, 2016, 50, 1077-1091.	2.6	61
147	Exact algorithms for the job sequencing and tool switching problem. IIE Transactions, 2004, 36, 37-45.	2.1	60
148	A branch-and-regret heuristic for stochastic and dynamic vehicle routing problems. Networks, 2007, 49, 330-340.	1.6	60
149	Exact Solution of Large-Scale Hub Location Problems with Multiple Capacity Levels. Transportation Science, 2012, 46, 439-459.	2.6	60
150	Classification, models and exact algorithms for multi-compartment delivery problems. European Journal of Operational Research, 2015, 242, 854-864.	3.5	59
151	Scheduling identical parallel machines with tooling constraints. European Journal of Operational Research, 2017, 257, 834-844.	3.5	59
152	A short-turning policy for the management of demand disruptions in rapid transit systems. Annals of Operations Research, 2016, 246, 145-166.	2.6	58
153	The orienteering problem with variable profits. Networks, 2013, 61, 104-116.	1.6	57
154	The dynamic multiperiod vehicle routing problem with probabilistic information. Computers and Operations Research, 2014, 48, 31-39.	2.4	57
155	Tactical network planning for food aid distribution in Kenya. Computers and Operations Research, 2015, 56, 68-83.	2.4	57
156	Designing robust rapid transit networks with alternative routes. Journal of Advanced Transportation, 2011, 45, 54-65.	0.9	56
157	Minimum cost path problems with relays. Computers and Operations Research, 2011, 38, 165-173.	2.4	56
158	Solving a multi-objective dynamic stochastic districting and routing problem with a co-evolutionary algorithm. Computers and Operations Research, 2016, 67, 12-24.	2.4	56
159	A divide and merge heuristic for the multiprocessor scheduling problem with sequence dependent setup times. European Journal of Operational Research, 2001, 133, 183-189.	3.5	55
160	A Tabu Search Algorithm For The Site Dependent Vehicle Routing Problem With Time Windows. Infor, 2001, 39, 292-298.	0.5	54
161	Heuristics for the traveling purchaser problem. Computers and Operations Research, 2003, 30, 491-504.	2.4	52
162	Scenario Tree-Based Heuristics for Stochastic Inventory-Routing Problems. INFORMS Journal on Computing, 2009, 21, 268-285.	1.0	52

#	Article	IF	CITATIONS
163	Districting for routing with stochastic customers. EURO Journal on Transportation and Logistics, 2012, 1, 67-85.	1.3	52
164	Dynamic Location-routeing Problems. Journal of the Operational Research Society, 1989, 40, 471-482.	2.1	51
165	Locating a transit line using tabu search. Location Science, 1996, 4, 1-19.	0.2	51
166	The network design problem with relays. European Journal of Operational Research, 2007, 180, 834-844.	3.5	50
167	Emerging approaches applied to maritime transport research: Past and future. Communications in Transportation Research, 2021, 1, 100011.	4.9	50
168	Planning rapid transit networks. Socio-Economic Planning Sciences, 2011, 45, 95-104.	2.5	49
169	Measuring quality of service in dial-a-ride operations: the case of a Canadian city. Transportation, 2012, 39, 539-564.	2.1	49
170	A continuous analysis framework for the solution of location–allocation problems with dense demand. Computers and Operations Research, 2010, 37, 123-136.	2.4	48
171	Collaborative Prepositioning Network Design for Regional Disaster Response. Production and Operations Management, 2019, 28, 2431-2455.	2.1	48
172	A large neighbourhood search heuristic for the aircraft and passenger recovery problem. 4or, 2011, 9, 139-157.	1.0	47
173	A generalized variable neighborhood search heuristic for the capacitated vehicle routing problem with stochastic service times. Top, 2012, 20, 99-118.	1.1	47
174	Districting for Arc Routing. INFORMS Journal on Computing, 2014, 26, 809-824.	1.0	47
175	Robust assembly line balancing with heterogeneous workers. Computers and Industrial Engineering, 2015, 88, 254-263.	3.4	47
176	Fleet deployment and demand fulfillment for container shipping liners. Transportation Research Part B: Methodological, 2019, 120, 15-32.	2.8	47
177	Lasso solution strategies for the vehicle routing problem with pickups and deliveries. European Journal of Operational Research, 2009, 192, 755-766.	3.5	45
178	Designing a home-to-work bus service in a metropolitan area. Transportation Research Part B: Methodological, 2011, 45, 1710-1726.	2.8	45
179	Multi-objective integration of timetables, vehicle schedules and user routings in a transit network. Transportation Research Part B: Methodological, 2017, 98, 94-112.	2.8	45
180	A two-echelon inventory routing problem for perishable products. Computers and Operations Research, 2019, 107, 156-172.	2.4	45

#	Article	IF	CITATIONS
181	Vehicle routing with cross-dock selection. Computers and Operations Research, 2017, 77, 254-266.	2.4	44
182	Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities. European Journal of Operational Research, 2018, 265, 517-532.	3.5	44
183	Quantifying the environmental and economic benefits of cooperation: A case study in temperature-controlled food logistics. Transportation Research, Part D: Transport and Environment, 2018, 65, 178-193.	3.2	44
184	A Memetic Heuristic for the Generalized Quadratic Assignment Problem. INFORMS Journal on Computing, 2006, 18, 433-443.	1.0	43
185	The traveling salesman problem with time-dependent service times. European Journal of Operational Research, 2016, 248, 372-383.	3.5	43
186	A continuous approximation model for the fleet composition problem. Transportation Research Part B: Methodological, 2012, 46, 1591-1606.	2.8	42
187	Dynamic design of sales territories. Computers and Operations Research, 2015, 56, 84-92.	2.4	42
188	Multi-objective rapid transit network design with modal competition: The case of Concepción, Chile. Computers and Operations Research, 2017, 78, 27-43.	2.4	42
189	The Traveling Salesman Problem with Pickups, Deliveries, and Handling Costs. Transportation Science, 2010, 44, 383-399.	2.6	41
190	Branch-Price-and-Cut Algorithms for the Pickup and Delivery Problem with Time Windows and Last-in-First-Out Loading. Transportation Science, 2015, 49, 752-766.	2.6	41
191	Rapid transit network design for optimal cost and origin–destination demand capture. Computers and Operations Research, 2013, 40, 3000-3009.	2.4	40
192	Tabu Search Heuristics for the Arc Routing Problem with Intermediate Facilities under Capacity and Length Restrictions. Mathematical Modelling and Algorithms, 2004, 3, 209-223.	0.5	39
193	An Integrated Methodology for the Rapid Transit Network Design Problem. , 2007, , 187-199.		39
194	Improved lower bounds and exact algorithm for the capacitated arc routing problem. Mathematical Programming, 2013, 137, 409-452.	1.6	39
195	Green Vehicle Routing. Profiles in Operations Research, 2016, , 243-265.	0.3	39
196	A vehicle routing problem arising in unmanned aerial monitoring. Computers and Operations Research, 2019, 105, 1-11.	2.4	39
197	Chapter 4: Heuristics for the Vehicle Routing Problem. , 2014, , 87-116.		38
198	Route and speed optimization for autonomous trucks. Computers and Operations Research, 2018, 100, 89-101.	2.4	38

#	Article	IF	CITATIONS
199	Locating rapid transit lines. Journal of Advanced Transportation, 1995, 29, 145-162.	0.9	37
200	An iterated local search heuristic for the logistics network design problem with single assignment. International Journal of Production Economics, 2008, 113, 626-640.	5.1	37
201	Waiting and Buffering Strategies for the Dynamic Pickup and Delivery Problem with Time Windows. Infor, 2008, 46, 165-175.	0.5	37
202	The synchronized arc and node routing problem: Application to road marking. Computers and Operations Research, 2013, 40, 1708-1715.	2.4	37
203	Partial-route inequalities for the multi-vehicle routing problem with stochastic demands. Discrete Applied Mathematics, 2014, 177, 121-136.	0.5	37
204	Branch-price-and-cut algorithms for the pickup and delivery problem with time windows and multiple stacks. European Journal of Operational Research, 2016, 250, 782-793.	3.5	37
205	Continuous approximation models in freight distribution management. Top, 2017, 25, 413-433.	1.1	37
206	An integer <mml:math <br="" altimg="si28.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>L</mml:mi></mml:math> -shaped algorithm for the Dial-a-Ride Problem with stochastic customer delays. Discrete Applied Mathematics, 2011, 159, 883-895.	0.5	35
207	The Traveling Salesman Problem with Draft Limits. Computers and Operations Research, 2012, 39, 2161-2167.	2.4	35
208	The Electric Vehicle Routing Problem with Capacitated Charging Stations. Transportation Science, 2022, 56, 460-482.	2.6	35
209	Heuristics for the location of inspection stations on a network. Naval Research Logistics, 2000, 47, 287-303.	1.4	34
210	Locating a cycle in a transportation or a telecommunications network. Networks, 2007, 50, 92-108.	1.6	33
211	The pickup and delivery traveling salesman problem with first-in-first-out loading. Computers and Operations Research, 2009, 36, 1800-1808.	2.4	33
212	Optimizing yard assignment in an automotive transshipment terminal. European Journal of Operational Research, 2011, 215, 149-160.	3.5	33
213	A general rapid network design, line planning and fleet investment integrated model. Annals of Operations Research, 2016, 246, 127-144.	2.6	33
214	Optimal location and capability of oil-spill response facilities for the south coast of Newfoundland. Omega, 2013, 41, 856-867.	3.6	32
215	Supply vessel planning under cost, environment and robustness considerations. Omega, 2015, 57, 271-281.	3.6	32
216	A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem. INFORMS Journal on Computing, 2012, 24, 554-564.	1.0	31

#	Article	IF	CITATIONS
217	An iterative two-phase hybrid matheuristic for a multi-product short sea inventory-routing problem. European Journal of Operational Research, 2016, 252, 775-788.	3.5	31
218	Strategic fleet planning for city logistics. Transportation Research Part B: Methodological, 2017, 95, 19-40.	2.8	31
219	The pickup and delivery problem with time windows and handling operations. Computers and Operations Research, 2017, 77, 127-140.	2.4	31
220	Solving An Integrated Logistics Problem Arising In Grocery Distribution. Infor, 1996, 34, 290-306.	0.5	30
221	A comparison of three metaheuristics for the workover rig routing problem. European Journal of Operational Research, 2012, 220, 28-36.	3.5	30
222	Robust supply vessel routing and scheduling. Transportation Research Part C: Emerging Technologies, 2018, 90, 366-378.	3.9	30
223	Designing New Electoral Districts for the City of Edmonton. Interfaces, 2011, 41, 534-547.	1.6	29
224	The Delivery Man Problem with time windows. Discrete Optimization, 2010, 7, 269-282.	0.6	28
225	A column generation post-optimization heuristic for the integrated aircraft and passenger recovery problem. Computers and Operations Research, 2016, 65, 42-52.	2.4	28
226	Steiner Tree Problems With Profits. Infor, 2006, 44, 99-115.	0.5	27
227	Ant colony optimization for the arc routing problem with intermediate facilities under capacity and length restrictions. Journal of Heuristics, 2010, 16, 211-233.	1.1	27
228	Exact and heuristic procedures for the material handling circular flow path design problem. European Journal of Operational Research, 2007, 176, 707-726.	3.5	26
229	Path based algorithms for metro network design. Computers and Operations Research, 2015, 62, 78-94.	2.4	26
230	Vessel routing with pickups and deliveries: An application to the supply of offshore oil platforms. Computers and Operations Research, 2017, 79, 140-147.	2.4	26
231	The periodic supply vessel planning problem with flexible departure times and coupled vessels. Computers and Operations Research, 2018, 94, 52-64.	2.4	26
232	Integrated planning of ship deployment, service schedule and container routing. Computers and Operations Research, 2019, 104, 304-318.	2.4	26
233	The capacity and distance constrained plant location problem. Computers and Operations Research, 2009, 36, 597-611.	2.4	25
234	A Large Neighbourhood Search Heuristic for a Periodic Supply Vessel Planning Problem Arising in Offshore Oil and Gas Operations. Infor, 2012, 50, 195-204.	0.5	25

#	Article	IF	CITATIONS
235	Berth allocation in an ore terminal with demurrage, despatch and maintenance. Computers and Industrial Engineering, 2016, 96, 8-15.	3.4	25
236	The bridges of Königsberg—A historical perspective. Networks, 2007, 49, 199-203.	1.6	24
237	Metaheuristics for the traveling salesman problem with pickups, deliveries and handling costs. Computers and Operations Research, 2012, 39, 1074-1086.	2.4	24
238	Long-haul vehicle routing and scheduling with idling options. Journal of the Operational Research Society, 2018, 69, 235-246.	2.1	24
239	Integrated planning for electric commercial vehicle fleets: A case study for retail mid-haul logistics networks. European Journal of Operational Research, 2021, 291, 944-960.	3.5	24
240	Efficient heuristics for the design of ring networks. Telecommunication Systems, 1995, 4, 177-188.	1.6	23
241	The Black and White Traveling Salesman Problem. Operations Research, 2006, 54, 366-378.	1.2	22
242	Scheduling twin robots on a line. Naval Research Logistics, 2014, 61, 119-130.	1.4	22
243	A comparison of three idling options in long-haul truck scheduling. Transportation Research Part B: Methodological, 2016, 93, 631-647.	2.8	22
244	Supply vessel routing and scheduling under uncertain demand. Transportation Research Part C: Emerging Technologies, 2019, 104, 305-316.	3.9	22
245	The Swapping Problem on a Line. SIAM Journal on Computing, 1999, 29, 327-335.	0.8	21
246	The multi-district team orienteering problem. Computers and Operations Research, 2014, 41, 76-82.	2.4	21
247	A deteriorating inventory routing problem for an inland liquefied natural gas distribution network. Transportation Research Part B: Methodological, 2019, 126, 45-67.	2.8	21
248	Subsidy design in a vessel speed reduction incentive program under government policies. Naval Research Logistics, 2021, 68, 344-358.	1.4	21
249	Assessing the efficiency of rapid transit configurations. Top, 1997, 5, 95-104.	1.1	20
250	Road-based goods transportation: a survey of real-world logistics applications from 2000 to 2015. Infor, 2016, 54, 79-96.	0.5	20
251	Improved models for technology choice in a transit corridor with fixed demand. Transportation Research Part B: Methodological, 2016, 83, 245-270.	2.8	20
252	An adaptive large neighborhood search heuristic for fleet deployment problems with voyage separation requirements. Transportation Research Part C: Emerging Technologies, 2016, 70, 129-141.	3.9	20

#	Article	IF	CITATIONS
253	An Exact Algorithm for Multilevel Uncapacitated Facility Location. Transportation Science, 2019, 53, 1085-1106.	2.6	20
254	Branch-and-cut algorithms for the undirected m-Peripatetic Salesman Problem. European Journal of Operational Research, 2005, 162, 700-712.	3.5	19
255	An optimised target-level inventory replenishment policy for vendor-managed inventory systems. International Journal of Production Research, 2015, 53, 3651-3660.	4.9	19
256	Three multi-start data-driven evolutionary heuristics for the vehicle routing problem with multiple time windows. Journal of Heuristics, 2019, 25, 485-515.	1.1	19
257	One-to-Many-to-One Single Vehicle Pickup and Delivery Problems. Operations Research/ Computer Science Interfaces Series, 2008, , 359-377.	0.3	18
258	A multi-dimensional shooting algorithm for the two-facility location–allocation problem with dense demand. Computers and Operations Research, 2011, 38, 450-463.	2.4	18
259	Exact and heuristic algorithms for the Hamiltonian p -median problem. European Journal of Operational Research, 2016, 253, 280-289.	3.5	18
260	The multi-vehicle cumulative covering tour problem. Annals of Operations Research, 2017, 258, 761-780.	2.6	18
261	The parking allocation problem for connected vehicles. Journal of Heuristics, 2020, 26, 377-399.	1.1	18
262	E-commerce shipping through a third-party supply chain. Transportation Research, Part E: Logistics and Transportation Review, 2020, 140, 101970.	3.7	18
263	The commodity-split multi-compartment capacitated arc routing problem. Computers and Operations Research, 2020, 122, 104994.	2.4	18
264	The Robust Bulk Ship Routing Problem with Batched Cargo Selection. Transportation Research Part B: Methodological, 2021, 143, 124-159.	2.8	18
265	The quality-driven vehicle routing problem: Model and application to a case of cooperative logistics. International Journal of Production Economics, 2021, 231, 107849.	5.1	17
266	A scalable dynamic parking allocation framework. Computers and Operations Research, 2021, 125, 105080.	2.4	17
267	Exact and heuristic algorithms for the fleet composition and periodic routing problem of offshore supply vessels with berth allocation decisions. European Journal of Operational Research, 2021, 295, 908-923.	3.5	17
268	A branch-and-cut algorithm for the minimum labeling Hamiltonian cycle problem and two variants. Computers and Operations Research, 2011, 38, 1534-1542.	2.4	16
269	The Vehicle Routing Problem with Stochastic Demands and Split Deliveries. Infor, 2012, 50, 59-71.	0.5	16
270	An Exact Algorithm for the Capacitated Arc Routing Problem with Deadheading Demand. Operations Research, 2013, 61, 315-327.	1.2	16

#	Article	IF	CITATIONS
271	Scheduling issues in vehicle routing. Annals of Operations Research, 2016, 236, 463-474.	2.6	16
272	A Branch-and-Cut Algorithm for the Multidepot Rural Postman Problem. Transportation Science, 2018, 52, 353-369.	2.6	16
273	Corridor-based metro network design with travel flow capture. Computers and Operations Research, 2018, 89, 58-67.	2.4	16
274	A branch-and-cut algorithm for solving the Non-Preemptive Capacitated Swapping Problem. Discrete Applied Mathematics, 2010, 158, 1599-1614.	0.5	15
275	The preemptive swapping problem on a tree. Networks, 2011, 58, 83-94.	1.6	15
276	Heuristics for the mixed swapping problem. Computers and Operations Research, 2010, 37, 108-114.	2.4	14
277	Multi-level facility location as the maximization of a submodular set function. European Journal of Operational Research, 2015, 247, 1013-1016.	3.5	14
278	A fast heuristic for large-scale capacitated arc routing problems. Journal of the Operational Research Society, 2018, 69, 1877-1887.	2.1	14
279	A Costâ€Sharing Mechanism for Multi ountry Partnerships in Disaster Preparedness. Production and Operations Management, 2021, 30, 4541-4565.	2.1	14
280	Locating Postal Relay Boxes Using a set Covering Algorithm. American Journal of Mathematical and Management Sciences, 1992, 12, 65-74.	0.6	13
281	An Interactive Decision Support System For The Design Of Rapid Public Transit Networks. Infor, 2002, 40, 111-118.	0.5	13
282	The Undirected <i>m</i> -Peripatetic Salesman Problem: Polyhedral Results and New Algorithms. Operations Research, 2007, 55, 949-965.	1.2	13
283	A computational comparison of several models for the exact solution of the capacity and distance constrained plant location problem. Computers and Operations Research, 2011, 38, 1109-1116.	2.4	13
284	A comparison of several models for the hamiltonian <i>p</i> â€median problem. Networks, 2014, 63, 350-363.	1.6	13
285	Efficient neighborhood search for the Probabilistic Pickup and Delivery Travelling Salesman Problem. Networks, 2005, 45, 195-198.	1.6	12
286	Rejoinder on: Static pickup and delivery problems: a classification scheme and survey. Top, 2007, 15, 45-47.	1.1	12
287	A branchâ€andâ€cut algorithm for the nonpreemptive swapping problem. Naval Research Logistics, 2009, 56, 478-486.	1.4	12
288	Adding a new station and a road link to a road–rail network in the presence of modal competition. Transportation Research Part B: Methodological, 2014, 68, 1-16.	2.8	12

#	Article	IF	CITATIONS
289	A branch-and-cut algorithm for the minimum branch vertices spanning tree problem. Computers and Operations Research, 2017, 81, 322-332.	2.4	12
290	A Shortest-Path Algorithm for the Departure Time and Speed Optimization Problem. Transportation Science, 2018, 52, 756-768.	2.6	12
291	The Steiner Traveling Salesman Problem and its extensions. European Journal of Operational Research, 2019, 278, 615-628.	3.5	12
292	Minimum cost network design in strategic alliances. Omega, 2020, 96, 102079.	3.6	12
293	Optimal subsidy design for shore power usage in ship berthing operations. Naval Research Logistics, 2022, 69, 566-580.	1.4	12
294	Optimal Picking Policies in E-Commerce Warehouses. Management Science, 2022, 68, 7497-7517.	2.4	12
295	Designing efficient methods for the tandem AGV network design problem using tabu search and genetic algorithm. International Journal of Advanced Manufacturing Technology, 2008, 36, 996-1009.	1.5	11
296	Formulations and Approximation Algorithms for Multilevel Uncapacitated Facility Location. INFORMS Journal on Computing, 2017, 29, 767-779.	1.0	11
297	Exact Solution of the Evasive Flow Capturing Problem. Operations Research, 2018, 66, 1625-1640.	1.2	11
298	A dynamic multi-period general routing problem arising in postal service and parcel delivery systems. Computers and Operations Research, 2021, 129, 105195.	2.4	11
299	A branchâ€andâ€cut algorithm for the preemptive swapping problem. Networks, 2012, 59, 387-399.	1.6	10
300	Computational comparison of several greedy algorithms for the minimum cost perfect matching problem on large graphs. Computers and Operations Research, 2017, 87, 107-113.	2.4	10
301	Transferability of collective transportation line networks from a topological and passenger demand perspective. Networks and Heterogeneous Media, 2015, 10, 1-16.	0.5	10
302	Optimal strip sequencing strategies for flexible manufacturing operations in two and three dimensions. Flexible Services and Manufacturing Journal, 1994, 6, 123-135.	0.4	9
303	The maximum return-on-investment plant location problem with market share. Journal of the Operational Research Society, 2008, 59, 399-406.	2.1	9
304	Median and covering location problems with interconnected facilities. Computers and Operations Research, 2019, 107, 1-18.	2.4	9
305	The undirected m-Capacitated Peripatetic Salesman Problem. European Journal of Operational Research, 2012, 223, 637-643.	3.5	8
306	Simultaneous Frequency and Capacity Setting in Uncapacitated Metro Lines in Presence of a Competing Mode. Transportation Research Procedia, 2014, 3, 289-298.	0.8	8

#	Article	IF	CITATIONS
307	The Rainbow Cycle Cover Problem. Networks, 2016, 68, 260-270.	1.6	8
308	Transportation in supply chain management: recent advances and research prospects. International Journal of Production Research, 2016, 54, 403-404.	4.9	8
309	Planning a selective delivery schedule through Adaptive Large Neighborhood Search. Computers and Industrial Engineering, 2017, 112, 368-378.	3.4	8
310	A districting-based heuristic for the coordinated capacitated arc routing problem. Computers and Operations Research, 2019, 111, 271-284.	2.4	8
311	Exact Solution of Several Families of Location-Arc Routing Problems. Transportation Science, 2019, 53, 1313-1333.	2.6	8
312	The Design of Rapid Transit Networks. , 2015, , 581-594.		8
313	On the ($r \mid X p$)-Medianoid Problem on a Network with Vertex and Edge Demands. Annals of Operations Research, 2002, 111, 271-278.	2.6	7
314	A global shooting algorithm for the facility location and capacity acquisition problem on a line with dense demand. Computers and Operations Research, 2016, 71, 1-15.	2.4	7
315	The railway line frequency and size setting problem. Public Transport, 2017, 9, 33-53.	1.7	7
316	Models for technology choice in a transit corridor with elastic demand. Transportation Research Part B: Methodological, 2017, 104, 733-756.	2.8	7
317	Reorganizing postal collection operations in urban areas as a result of declining mail volumes – A case study in Bologna. Journal of the Operational Research Society, 2020, , 1-16.	2.1	7
318	The Railway Network Design, Line Planning and Capacity Problem: An Adaptive Large Neighborhood Search Metaheuristic. Advances in Intelligent Systems and Computing, 2018, , 198-219.	0.5	7
319	Minimum cost delivery of multi-item orders in e-commerce logistics. Computers and Operations Research, 2022, 138, 105613.	2.4	7
320	The railway rapid transit network construction scheduling problem. Computers and Industrial Engineering, 2019, 138, 106075.	3.4	6
321	Facility location problems with user cooperation. Top, 2019, 27, 125-145.	1.1	6
322	Inbound and outbound flow integration for cross-docking operations. European Journal of Operational Research, 2021, 294, 1153-1163.	3.5	6
323	The pipeline and valve location problem. European Journal of Industrial Engineering, 2012, 6, 301.	0.5	5
324	The Minimum Flow Cost Hamiltonian Cycle Problem: A comparison of formulations. Discrete Applied Mathematics, 2015, 187, 140-154.	0.5	5

#	Article	IF	CITATIONS
325	The Chinese Postman Problem with Load-Dependent Costs. Transportation Science, 2018, 52, 370-385.	2.6	5
326	Integrating workload smoothing and inventory reduction in three intermodal logistics platforms of a European car manufacturer. Computers and Operations Research, 2019, 112, 104762.	2.4	5
327	Algorithms for the Calzedonia workload allocation problem. Journal of the Operational Research Society, 2021, 72, 2004-2017.	2.1	5
328	Solving a Real-World Urban Postal Service System Redesign Problem. Scientific Programming, 2021, 2021, 1-17.	0.5	5
329	A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints. INFORMS Journal on Computing, 2020, 32, 120-134.	1.0	4
330	A spatially disaggregated model for the technology selection and design of a transit line. Public Transport, 2020, 12, 647-691.	1.7	4
331	Optimizing access to drinking water in remote areas. Application to Nepal. Computers and Operations Research, 2022, 140, 105669.	2.4	4
332	Antenna Positioning In Mobile Telecommunication Networks. Infor, 2006, 44, 157-174.	0.5	3
333	Solving real-size stochastic railway rapid transit network construction scheduling problems. Computers and Operations Research, 2022, 138, 105600.	2.4	3
334	Single Allocation Hub Location with Heterogeneous Economies of Scale. Operations Research, 2022, 70, 766-785.	1.2	3
335	A stochastic optimization approach for the supply vessel planning problem under uncertain demand. Transportation Research Part B: Methodological, 2022, 162, 209-228.	2.8	3
336	Operational Research: Milestones and Highlights of Canadian Contributions. Infor, 2008, 46, 309-312.	0.5	2
337	Solving a vendor-managed inventory routing problem arising in the distribution of bottled water in Morocco. European Journal of Industrial Engineering, 2017, 11, 168.	0.5	2
338	The Design of Rapid Transit Networks. , 2019, , 687-703.		2
339	Analysis of the selective traveling salesman problem with time-dependent profits. Top, 2023, 31, 165-193.	1.1	2
340	Planning and Managing Long-Haul Freight Transportation. , 2005, , 199-245.		1
341	Comments on: Routing problems with loading constraints. Top, 2010, 18, 28-30.	1.1	1
342	Rejoinder on: Continuous approximation models in freight distribution management. Top, 2017, 25, 443-444.	1.1	1

#	Article	IF	CITATIONS
343	Periodic supply vessel planning under demand and weather uncertainty. Infor, 2021, 59, 411-438.	0.5	1
344	Mode boundaries of automated metro and semi-rapid rail in urban transit. Public Transport, 0, , 1.	1.7	1
345	Some contributions of Ailsa H. Land to the study of the traveling salesman problem. EURO Journal on Computational Optimization, 2021, 9, 100018.	1.5	1
346	Solving Inventory Management Problems. , 2005, , 121-155.		0
347	Introducing Logistics Systems. , 2005, , 1-23.		0
348	Designing and Operating a Warehouse. , 2005, , 157-198.		0
349	Forecasting Logistics Requirements. , 2005, , 25-72.		0
350	Designing the Logistics Network. , 2005, , 73-119.		0
351	Planning and Managing Short-Haul Freight Transportation. , 2005, , 247-298.		Ο
352	Linking Theory to Practice. , 2005, , 299-337.		0
353	The Tube Challenge. Infor, 2014, 52, 10-13.	0.5	Ο