
Jan KolaÅÃ[™] k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597196/publications.pdf Version: 2024-02-01

ΙΔΝΙΚΟΙΔΔΥΜΔε

#	Article	IF	CITATIONS
1	Ferrate(VI)-Induced Arsenite and Arsenate Removal by In Situ Structural Incorporation into Magnetic Iron(III) Oxide Nanoparticles. Environmental Science & Technology, 2013, 47, 3283-3292.	10.0	185
2	Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides. Environmental Science & Technology, 2015, 49, 2319-2327.	10.0	118
3	Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3027-3038.	6.7	84
4	Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicology and Environmental Safety, 2018, 147, 110-116.	6.0	83
5	Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Research, 2016, 103, 83-91.	11.3	82
6	Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere, 2013, 93, 2690-2697.	8.2	63
7	Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Water Research, 2018, 141, 357-365.	11.3	42
8	Sulfidated nano-scale zerovalent iron is able to effectively reduce in situ hexavalent chromium in a contaminated aquifer. Journal of Hazardous Materials, 2021, 405, 124665.	12.4	42
9	Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal. Chemical Engineering Journal, 2018, 354, 335-345.	12.7	30
10	Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Advanced Science, 2021, 8, 2003090.	11.2	27
11	Carboxylated Graphene for Radical-Assisted Ultra-Trace-Level Water Treatment and Noble Metal Recovery. ACS Nano, 2021, 15, 3349-3358.	14.6	25
12	Culture medium mediated aggregation and re-crystallization of silver nanoparticles reduce their toxicity. Applied Materials Today, 2018, 12, 198-206.	4.3	10
13	Graphene Nanobeacons with Highâ€Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small, 2022, 18, .	10.0	6
14	Nanoscale Zerovalent Iron Particles for Treatment of Metalloids. , 2019, , 157-199.		5
15	Ferrates as Powerful Oxidants in Water Treatment Technologies. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 177-201.	0.5	2