
Woo-Hee Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7597134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultralow-Resistivity Molybdenum-Carbide Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition Using a Cyclopentadienyl-Based Precursor. Chemistry of Materials, 2022, 34, 2576-2584.	6.7	9
2	Inhibitor-free area-selective atomic layer deposition of SiO2 through chemoselective adsorption of an aminodisilane precursor on oxide versus nitride substrates. Applied Surface Science, 2022, 589, 152939.	6.1	8
3	A Strategy for Waferâ€Scale Crystalline MoS ₂ Thin Films with Controlled Morphology Using Pulsed Metal–Organic Chemical Vapor Deposition at Low Temperature. Advanced Materials Interfaces, 2022, 9, .	3.7	8
4	Rhenium oxide/sulfide binary phase flakes decorated on nanofiber support for enhanced activation of electrochemical conversion reactions. Chemical Engineering Journal, 2022, 446, 136951.	12.7	8
5	Advanced Atomic Layer Deposition: Ultrathin and Continuous Metal Thin Film Growth and Work Function Control Using the Discrete Feeding Method. Nano Letters, 2022, 22, 4589-4595.	9.1	11
6	Enhanced selectivity of atomic layer deposited Ru thin films through the discrete feeding of aminosilane inhibitor molecules. Applied Surface Science, 2021, 539, 148247.	6.1	15
7	Wafer-Scale Growth of a MoS ₂ Monolayer via One Cycle of Atomic Layer Deposition: An Adsorbate Control Method. Chemistry of Materials, 2021, 33, 4099-4105.	6.7	23
8	Inherently Area‧elective Atomic Layer Deposition of SiO ₂ Thin Films to Confer Oxide Versus Nitride Selectivity. Advanced Functional Materials, 2021, 31, 2102556.	14.9	32
9	Metal-insulator transition and interfacial thermal transport in atomic layer deposited Ru nanofilms characterized by ultrafast terahertz spectroscopy. Applied Surface Science, 2021, 563, 150184.	6.1	8
10	Selfâ€Powered Gas Sensors: 2D Transition Metal Dichalcogenide Heterostructures for p―and nâ€Type Photovoltaic Selfâ€Powered Gas Sensor (Adv. Funct. Mater. 43/2020). Advanced Functional Materials, 2020, 30, 2070284.	14.9	1
11	2D Transition Metal Dichalcogenide Heterostructures for p―and nâ€Type Photovoltaic Selfâ€Powered Gas Sensor. Advanced Functional Materials, 2020, 30, 2003360.	14.9	102
12	Atomic Layer Deposition of Pt on the Surface Deactivated by Fluorocarbon Implantation: Investigation of the Growth Mechanism. Chemistry of Materials, 2020, 32, 9696-9703.	6.7	8
13	Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS ₂ by Atomic Layer Deposition. ACS Nano, 2020, 14, 1757-1769.	14.6	29
14	Improved interface quality of atomic-layer-deposited ZrO2 metal-insulator-metal capacitors with Ru bottom electrodes. Thin Solid Films, 2020, 701, 137950.	1.8	14
15	Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor. Applied Surface Science, 2019, 494, 591-599.	6.1	25
16	Thermal Atomic Layer Deposition of Device-Quality SiO ₂ Thin Films under 100 °C Using an Aminodisilane Precursor. Chemistry of Materials, 2019, 31, 5502-5508.	6.7	26
17	Hydrogen barrier performance of sputtered La2O3 films for InGaZnO thin-film transistor. Journal of Materials Science, 2019, 54, 11145-11156.	3.7	18
18	Out-of-plane piezoresponse of monolayer MoS2 on plastic substrates enabled by highly uniform and layer-controllable CVD. Applied Surface Science, 2019, 487, 1356-1361.	6.1	36

WOO-HEE KIM

#	Article	IF	CITATIONS
19	Phase-controlled synthesis of SnOx thin films by atomic layer deposition and post-treatment. Applied Surface Science, 2019, 480, 472-477.	6.1	25
20	Analysis of Defect Recovery in Reduced Graphene Oxide and Its Application as a Heater for Self-Healing Polymers. ACS Applied Materials & Interfaces, 2019, 11, 16804-16814.	8.0	19
21	Structural and ferroelectric properties of P(VDF-TrFE) thin films depending on the annealing temperature. Materials Letters, 2019, 238, 294-297.	2.6	15
22	Piezoelectric and ferroelectric characteristics of P(VDF-TrFE) thin films on Pt and ITO substrates. Materials Letters, 2019, 238, 237-240.	2.6	6
23	Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y ₂ O ₃ with Ozone. ACS Applied Materials & Interfaces, 2018, 10, 2143-2150.	8.0	41
24	Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation. Chemistry of Materials, 2018, 30, 663-670.	6.7	90
25	Thermal adsorption-enhanced atomic layer etching of Si3N4. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	24
26	Area-Selective Atomic Layer Deposition Using Si Precursors as Inhibitors. Chemistry of Materials, 2018, 30, 7603-7610.	6.7	78
27	Effects of Ar Addition to O ₂ Plasma on Plasma-Enhanced Atomic Layer Deposition of Oxide Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 40286-40293.	8.0	14
28	Comparative study of the growth characteristics and electrical properties of atomic-layer-deposited HfO ₂ films obtained from metal halide and amide precursors. Journal of Materials Chemistry C, 2018, 6, 7367-7376.	5.5	40
29	Effects of a Nb nanopin electrode on the resistive random-access memory switching characteristics of NiO thin films. Nanoscale, 2018, 10, 13443-13448.	5.6	25
30	Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide. Journal of Chemical Physics, 2017, 146, 052802.	3.0	64
31	Reaction Mechanism of Area-Selective Atomic Layer Deposition for Al ₂ O ₃ Nanopatterns. ACS Applied Materials & Interfaces, 2017, 9, 41607-41617.	8.0	73
32	Uniform color coating of multilayered TiO2/Al2O3 films by atomic layer deposition. Journal of Coatings Technology Research, 2017, 14, 177-183.	2.5	4
33	Local ferroelectric responses of epitaxial PbTiO3 thin films to heated atomic force microscopy. Materials Letters, 2016, 168, 134-137.	2.6	2
34	Growth characteristics and electrical properties of SiO2 thin films prepared using plasma-enhanced atomic layer deposition and chemical vapor deposition with an aminosilane precursor. Journal of Materials Science, 2016, 51, 5082-5091.	3.7	31
35	A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantation. ACS Nano, 2016, 10, 4451-4458.	14.6	78
36	In situ surface cleaning on a Ge substrate using TMA and MgCp ₂ for HfO ₂ -based gate oxides. Journal of Materials Chemistry C, 2015, 3, 4852-4858.	5.5	20

WOO-HEE KIM

#	Article	IF	CITATIONS
37	An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis. Review of Scientific Instruments, 2014, 85, 055116.	1.3	9
38	Imprint Control of Nonvolatile Shape Memory with Asymmetric Ferroelectric Multilayers. Chemistry of Materials, 2014, 26, 6911-6914.	6.7	17
39	Variation in ferroelectric polarization direction of epitaxial (001) SrBi2Ta2O9 thin film induced by oxygen vacancy. Ceramics International, 2014, 40, 2741-2745.	4.8	4
40	Atomic layer deposition of Y2O3 and yttrium-doped HfO2 using a newly synthesized Y(iPrCp)2(N-iPr-amd) precursor for a high permittivity gate dielectric. Applied Surface Science, 2014, 297, 16-21.	6.1	54
41	Triangular ferroelectric domains of highly (111)-oriented NaNbO3 thin film on a glass substrate. Electronic Materials Letters, 2014, 10, 107-110.	2.2	9
42	Resistive switching characteristics of ferroelectric BiFeO3 nanodot prepared by dip-pen nanolithography. Materials Letters, 2014, 121, 122-125.	2.6	9
43	Ferroelectric domain wall motion in epitaxial PbTiO3 and BiFeO3 thin films. Materials Letters, 2014, 124, 47-49.	2.6	18
44	Atomic layer deposition of CeO2/HfO2 gate dielectrics on Ge substrate. Applied Surface Science, 2014, 321, 214-218.	6.1	12
45	Atomic layer deposition of B2O3/SiO2 thin films and their application in an efficient diffusion doping process. Journal of Materials Chemistry C, 2014, 2, 5805.	5.5	26
46	Room temperature magnetoresistance of horizontally aligned Mn-doped ZnO nanowires on terrace edges. Materials Letters, 2014, 133, 101-104.	2.6	11
47	Thickness and Post-annealing Effects of the Sputtered La-Capping Layer Inserted between the TiN Gate and Hf-Based Dielectrics. ACS Applied Materials & Interfaces, 2014, 6, 5199-5205.	8.0	3
48	Nanoscale resistive switching memory device composed of NiO nanodot and graphene nanoribbon nanogap electrodes. Carbon, 2014, 79, 388-392.	10.3	35
49	Significant Enhancement of the Dielectric Constant through the Doping of <scp><scp>CeO</scp></scp> ₂ into <scp><scp>HfO</scp></scp> ₂ by Atomic Layer Deposition. Journal of the American Ceramic Society, 2014, 97, 1164-1169.	3.8	18
50	Confinement of Ferroelectric Domain-Wall Motion at Artificially Formed Conducting-Nanofilaments in Epitaxial BiFeO ₃ Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 6346-6350.	8.0	22
51	BiFeO3 nanodots prepared via dip-pen lithography on Nb-doped SrTiO3 and highly ordered pyrolytic graphite substrates. Applied Physics Letters, 2013, 103, 052905.	3.3	9
52	The effects of La substitution on ferroelectric domain structure and multiferroic properties of epitaxially grown BiFeO3 thin films. Applied Physics Letters, 2013, 103, .	3.3	39
53	Growth characteristics and electrical properties of Ta2O5 grown by thermal and O3-based atomic layer deposition on TiN substrates for metal–insulator–metal capacitor applications. Thin Solid Films, 2013, 542, 71-75.	1.8	22
54	Single-Layer MoS ₂ Field Effect Transistor with Epitaxially Grown SrTiO ₃ Gate Dielectric on Nb-doped SrTiO ₃ Substrate. Bulletin of the Korean Chemical Society, 2013, 34, 2563-2564.	1.9	11

WOO-HEE КІМ

#	Article	IF	CITATIONS
55	Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition. Journal of the Electrochemical Society, 2011, 158, D1.	2.9	79
56	Low Pressure Chemical Vapor Deposition of Aluminum-Doped Zinc Oxide for Transparent Conducting Electrodes. Journal of the Electrochemical Society, 2011, 158, D495.	2.9	45
57	Growth Characteristics and Film Properties of Cerium Dioxide Prepared by Plasma-Enhanced Atomic Layer Deposition. Journal of the Electrochemical Society, 2011, 158, G169.	2.9	30
58	Electronic Structure of Cerium Oxide Gate Dielectric Grown by Plasma-Enhanced Atomic Layer Deposition. Journal of the Electrochemical Society, 2011, 158, G217.	2.9	41
59	Low-temperature Atomic Layer Deposition of TiO2, Al2O3, and ZnO Thin Films. Journal of the Korean Physical Society, 2011, 59, 452-457.	0.7	54
60	Growth characteristics and electrical properties of La2O3 gate oxides grown by thermal and plasma-enhanced atomic layer deposition. Thin Solid Films, 2010, 519, 362-366.	1.8	57
61	Plasma-Enhanced Atomic Layer Deposition of Ni. Japanese Journal of Applied Physics, 2010, 49, 05FA11.	1.5	38
62	High Quality Area-Selective Atomic Layer Deposition Co Using Ammonia Gas as a Reactant. Journal of the Electrochemical Society, 2010, 157, D10.	2.9	65
63	Flatband voltage control in p-metal gate metal-oxide-semiconductor field effect transistor by insertion of TiO2 layer. Applied Physics Letters, 2010, 96, .	3.3	14
64	Flat band voltage (VFB) modulation by controlling compositional depth profile in La2O3/HfO2 nanolaminate gate oxide. Journal of Applied Physics, 2010, 107, 074109.	2.5	27
65	?The Degradation of Deposition Blocking Layer during Area Selective Plasma Enhanced Atomic Layer Deposition of Cobalt. Journal of the Korean Physical Society, 2010, 56, 104-107.	0.7	26
66	The Benefits of Atomic Layer Deposition in Non-semiconductor Applications; Producing Metallic Nanomaterials and Fabrication of Flexible Display. ECS Transactions, 2009, 25, 101-111.	0.5	1
67	Interface roughness effect between gate oxide and metal gate on dielectric property. Thin Solid Films, 2009, 517, 3892-3895.	1.8	11
68	Nanomaterials fabrication using advanced thin film deposition and nanohybrid process. , 2009, , .		0
69	Cobalt and nickel atomic layer depositions for contact applications. , 2009, , .		2
70	Atomic Layer Deposition of Ruthenium and Ruthenium-oxide ThinFilms by Using a Ru(EtCp)\$_{2}\$ Precursor and Oxygen Gas. Journal of the Korean Physical Society, 2009, 55, 32-37.	0.7	41
71	Effect oxygen exposure on the quality of atomic layer deposition of ruthenium from bis(cyclopentadienyl)ruthenium and oxygen. Thin Solid Films, 2008, 516, 7345-7349.	1.8	45
72	Thermal and plasma enhanced atomic layer deposition ruthenium and electrical characterization as a metal electrode. Microelectronic Engineering, 2008, 85, 39-44.	2.4	89

#	Article	IF	CITATIONS
73	Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition. Nanotechnology, 2008, 19, 045302.	2.6	79
74	Nanomaterial fabrication by Ru atomic layer deposition on anodic aluminum oxide nanotemplate. , 2006, , .		0

6