
Soledad Bollo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7596974/publications.pdf Version: 2024-02-01

SOLEDAD ROLLO

#	Article	IF	CITATIONS
1	Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochimica Acta, 2012, 62, 163-171.	2.6	79
2	Electrooxidation of DNA at Glassy Carbon Electrodes Modified with Multiwall Carbon Nanotubes Dispersed in Chitosan. Electroanalysis, 2007, 19, 833-840.	1.5	70
3	Label-Free Graphene Oxide-Based Surface Plasmon Resonance Immunosensor for the Quantification of Galectin-3, a Novel Cardiac Biomarker. ACS Applied Materials & Interfaces, 2018, 10, 23501-23508.	4.0	55
4	Glassy carbon electrodes modified with CNT dispersed in chitosan: Analytical applications for sensing DNA–methylene blue interaction. Journal of Electroanalytical Chemistry, 2009, 634, 123-126.	1.9	46
5	Reduced Graphene Oxides: Influence of the Reduction Method on the Electrocatalytic Effect towards Nucleic Acid Oxidation. Nanomaterials, 2017, 7, 168.	1.9	40
6	Glassy Carbon Electrodes Modified with Multiwall Carbon Nanotubes Dispersed in Polylysine. Electroanalysis, 2008, 20, 1623-1631.	1.5	37
7	Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA. Colloids and Surfaces B: Biointerfaces, 2013, 108, 329-336.	2.5	34
8	Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode. Electrochimica Acta, 2011, 56, 8484-8491.	2.6	29
9	Ethylendiamine-functionalized multi-walled carbon nanotubes prevent cationic dispersant use in the electrochemical detection of dsDNA. Sensors and Actuators B: Chemical, 2014, 191, 688-694.	4.0	24
10	Carbon nanotubes non-covalently functionalized with cytochrome c: A new bioanalytical platform for building bienzymatic biosensors. Microchemical Journal, 2016, 128, 161-165.	2.3	22
11	Electrochemistry of interaction of 2-(2-nitrophenyl)-benzimidazole derivatives with DNA. Bioelectrochemistry, 2010, 79, 162-167.	2.4	21
12	Effects of preparation on catalytic, magnetic and hybrid micromotors on their functional features and application in gastric cancer biomarker detection. Sensors and Actuators B: Chemical, 2020, 310, 127843.	4.0	19
13	Graphene-based sensors for small molecule determination in real samples. Microchemical Journal, 2021, 167, 106303.	2.3	16
14	Coâ^'doped stannates â, reduced graphene composites: Effect of cobalt substitution on the electrochemical sensing of hydrogen peroxide. Sensors and Actuators B: Chemical, 2017, 250, 412-419.	4.0	15
15	Functionalization of Gold Nanostars with Cationic β-Cyclodextrin-Based Polymer for Drug Co-Loading and SERS Monitoring. Pharmaceutics, 2021, 13, 261.	2.0	15
16	Effect of the Dispersing Agent on the Electrochemical Response of Glassy Carbon Electrodes Modified with Dispersions of Carbon Nanotubes. Electroanalysis, 2012, 24, 2317-2323.	1.5	14
17	Carbon Nanotubes Electrochemistry Allows the In Situ Evaluation of the Effect of βâ€Sheet Breakers on the Aggregation Process of βâ€Amyloid. Electroanalysis, 2012, 24, 938-944.	1.5	14
18	Quaternized chitosan as support for the assembly of gold nanoparticles and glucose oxidase: Physicochemical characterization of the platform and evaluation of its biocatalytic activity. Electrochimica Acta, 2011, 56, 1316-1322.	2.6	11

Soledad Bollo

#	Article	IF	CITATIONS
19	A comparative study of electrochemical performances of carbon nanomaterial-modified electrodes for DNA detection. Nanotubes or graphene?. Journal of Solid State Electrochemistry, 2016, 20, 1059-1064.	1.2	11
20	Immobilization of graphene-derived materials at gold surfaces: Towards a rational design of protein-based platforms for electrochemical and plasmonic applications. Electrochimica Acta, 2018, 259, 723-732.	2.6	11
21	Electrochemical Nucleic Acid Biosensors for the Detection of Interaction Between Peroxynitrite and DNA. Electroanalysis, 2007, 19, 1518-1523.	1.5	9
22	Enhanced Hydrogen Peroxide Sensing Based on Tetraruthenated Porphyrins/Nafion/Glassy Carbonâ€modified Electrodes via Incorporating of Carbon Nanotubes. Electroanalysis, 2015, 27, 2778-2784.	1.5	8
23	Co ₂ SnO ₄ /Carbon Nanotubes Composites: A Novel Approach for Electrochemical Sensing of Hydrogen Peroxide. Electroanalysis, 2018, 30, 27-30.	1.5	6
24	Electrocatalytic Activity of Nanohybrids Based on Carbon Nanomaterials and MFe ₂ O ₄ (M=Co, Mn) towards the Reduction of Hydrogen Peroxide. Electroanalysis, 2018, 30, 1621-1626.	1.5	5
25	Label-Free Oligonucleotide-Based SPR Biosensor for the Detection of the Gene Mutation Causing Prothrombin-Related Thrombophilia. Sensors, 2020, 20, 6240.	2.1	5
26	MWCNTâ€Organoimido Polyoxomolybdate Hybrid Material: Analytical Applications for Amperometric Sensing of Hydrogen Peroxide. Electroanalysis, 2021, 33, 2105-2114.	1.5	5
27	Co2TiO4/Reduced Graphene Oxide Nanohybrids for Electrochemical Sensing Applications. Nanomaterials, 2019, 9, 1611.	1.9	3
28	<i>In situ</i> Electroreduction of Graphene Oxide: Increased Sensitivity for the Determination of NADH. Electroanalysis, 2019, 31, 461-467.	1.5	3
29	ELECTROOXIDATION OF DNA AT GLASSY CARBON ELECTRODES MODIFIED WITH MULTI-WALLED CARBON NANOTUBES WITH DIFFERENT OXIDATION DEGREE. Journal of the Chilean Chemical Society, 2014, 59,	0.5	2