
Tianying Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/759685/publications.pdf Version: 2024-02-01

TIANVING CHO

#	Article	IF	CITATIONS
1	Infrared-Triggered Actuators from Graphene-Based Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 9921-9927.	3.1	355
2	Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites. Journal of Physical Chemistry C, 2007, 111, 13696-13700.	3.1	324
3	Bioreducible Zinc(II)-Coordinative Polyethylenimine with Low Molecular Weight for Robust Gene Delivery of Primary and Stem Cells. Journal of the American Chemical Society, 2017, 139, 5102-5109.	13.7	127
4	Highly branched Âpoly(β-amino ester)Âdelivery of minicircle DNA for transfection of neurodegenerativeÂdisease related cells. Nature Communications, 2019, 10, 3307.	12.8	80
5	A dual-template imprinted capsule with remarkably enhanced catalytic activity for pesticide degradation and elimination simultaneously. Chemical Communications, 2013, 49, 1073-1075.	4.1	65
6	A novel glutathione modified chitosan conjugate for efficient gene delivery. Journal of Controlled Release, 2011, 154, 177-188.	9.9	60
7	Biodegradable Highly Branched Poly(β-Amino Ester)s for Targeted Cancer Cell Gene Transfection. ACS Biomaterials Science and Engineering, 2017, 3, 1283-1286.	5.2	55
8	Topology Affecting Block Copolymer Nanoassemblies: Linear Block Copolymers versus Star Block Copolymers under PISA Conditions. Macromolecules, 2018, 51, 5440-5449.	4.8	55
9	Influence of Solvophilic Homopolymers on RAFT Polymerization-Induced Self-Assembly. Macromolecules, 2018, 51, 4397-4406.	4.8	48
10	Surface hydrophilic modification with a sugar moiety for a uniform-sized polymer molecularly imprinted for phenobarbital in serum. Acta Biomaterialia, 2011, 7, 3086-3093.	8.3	47
11	4-Nitrophenol surface molecularly imprinted polymers based on multiwalled carbon nanotubes for the elimination of paraoxon pollution. Journal of Hazardous Materials, 2012, 227-228, 243-249.	12.4	41
12	Star Block Copolymer Nanoassemblies: Block Sequence is All-Important. Macromolecules, 2019, 52, 718-728.	4.8	39
13	Molecularly imprinted nanocapsule mimicking phosphotriesterase for the catalytic hydrolysis of organophosphorus pesticides. European Polymer Journal, 2019, 110, 1-8.	5.4	37
14	PLL/pDNA/P(His-co-DMAEL) ternary complexes: assembly, stability and gene delivery. Journal of Materials Chemistry, 2012, 22, 10743.	6.7	36
15	Surface imprinted macroporous film for high performance protein recognition in combination with quartz crystal microbalance. Sensors and Actuators B: Chemical, 2011, 153, 96-102.	7.8	35
16	Multifunctional oligomer incorporation: a potent strategy to enhance the transfection activity of poly(<scp>l</scp> -lysine). Biomaterials Science, 2016, 4, 522-532.	5.4	35
17	Glycopolymer modification on physicochemical and biological properties of poly(l-lysine) for gene delivery. International Journal of Biological Macromolecules, 2012, 50, 965-973.	7.5	34
18	Construction of a novel macroporous imprinted biosensor based on quartz crystal microbalance for ribonuclease Adetection. Biosensors and Bioelectronics, 2013, 42, 80-86.	10.1	34

TIANYING GUO

#	Article	IF	CITATIONS
19	Preparation and properties of core [poly(styrene-n-butyl acrylate)]–shell [poly(styrene–methyl) Tj ETQq1 1 0. characteristics. Journal of Applied Polymer Science, 2006, 100, 1824-1830.	784314 rş 2.6	gBT /Overloc 31
20	Genipin-crosslinked hydrophobical chitosan microspheres and their interactions with bovine serum albumin. Carbohydrate Polymers, 2011, 83, 2016-2021.	10.2	31
21	Virus Spike and Membrane-Lytic Mimicking Nanoparticles for High Cell Binding and Superior Endosomal Escape. ACS Applied Materials & Interfaces, 2018, 10, 23630-23637.	8.0	31
22	Gene delivery of PEI incorporating with functional block copolymer via non-covalent assembly strategy. Acta Biomaterialia, 2013, 9, 5003-5012.	8.3	30
23	Synthesis and evaluation of a moisture-promoted healing copolymer. Polymer, 2012, 53, 2979-2990.	3.8	28
24	Alkylated branched poly(β-amino esters) demonstrate strong DNA encapsulation, high nanoparticle stability and robust gene transfection efficacy. Journal of Materials Chemistry B, 2017, 5, 5307-5310.	5.8	27
25	The effects of a multifunctional oligomer and its incorporation strategies on the gene delivery efficiency of poly(l-lysine). Chemical Communications, 2012, 48, 4594.	4.1	26
26	Zinc Coordination Substitute Amine: A Noncationic Platform for Efficient and Safe Gene Delivery. ACS Macro Letters, 2018, 7, 868-874.	4.8	24
27	Novel imprinted nanocapsule with highly enhanced hydrolytic activity for organophosphorus pesticide degradation and elimination. European Polymer Journal, 2015, 72, 190-201.	5.4	22
28	RAFT synthesis and micellization of a photo-, temperature- and pH-responsive diblock copolymer based on spiropyran. Polymer Chemistry, 2017, 8, 7325-7332.	3.9	20
29	<i>In situ</i> preparation of transparent polyimide nanocomposite with a small load of graphene oxide. Journal of Applied Polymer Science, 2013, 128, 3163-3169.	2.6	19
30	One-step synthesis of reactant-product-dual-template imprinted capsules as phosphotriesterase mimetic enzymes for pesticide elimination. RSC Advances, 2014, 4, 7881.	3.6	13
31	Evaluation of the effects of amphiphilic oligomers in PEI based ternary complexes on the improvement of pDNA delivery. Journal of Materials Chemistry B, 2014, 2, 5387-5396.	5.8	13
32	Rapid hydrolysis of nerve agent simulants by molecularly imprinted porous crosslinked polymer incorporating mononuclear zinc(II)-picolinamine-amidoxime module. Journal of Catalysis, 2019, 380, 83-90.	6.2	13
33	Zinc Coordinated Cationic Polymers Break Up the Paradox between Low Molecular Weight and High Transfection Efficacy. Biomacromolecules, 2018, 19, 4270-4276.	5.4	11
34	N,N,N-trimethylchitosan modified with well defined multifunctional polymer modules used as pDNA delivery vector. Carbohydrate Polymers, 2016, 137, 222-230.	10.2	10
35	Nanosize polymer latices made by microemulsion copolymerization: Preparation and characterization. Journal of Applied Polymer Science, 2003, 90, 3625-3630.	2.6	9
36	Amphiphilic poly(styrene-b-ethylene oxide)-block-copolymer-intercalated layered silicate and its nanocomposites with acrylonitrile-butadiene- styrene resin. Journal of Applied Polymer Science, 2004, 94, 238-242.	2.6	9

TIANYING GUO

#	Article	IF	CITATIONS
37	Facile in-situ strategy for incorporating amphoteric dopamine into metal–organic framework with optimized degradation capacity of nerve agents simulant. Chemical Engineering Journal, 2022, 448, 137702.	12.7	9
38	Facile Fabrication of Superhydrophobic Nanocomposite Coatings Based on Waterâ€Based Emulsion Latex. Advanced Materials Interfaces, 2018, 5, 1800207.	3.7	8
39	Ag(I) Pyridine–Amidoxime Complex as the Catalysis Activity Domain for the Rapid Hydrolysis of Organothiophosphate-Based Nerve Agents: Mechanistic Evaluation and Application. ACS Applied Materials & Interfaces, 2021, 13, 34428-34437.	8.0	7
40	The target gene carrying validity to HePG2 cells with the brush-like glutathione modified chitosan compound. Carbohydrate Polymers, 2012, 89, 46-53.	10.2	6
41	Polycation-Based Ternary Gene Delivery System. Current Drug Metabolism, 2015, 16, 152-165.	1.2	6
42	NOVEL NANOSIZE POLYMER LATEXES PREPARED BY A CORE-SHELL MICROEMULSION COPOLYMERIZATION: PREPARATION AND CHARACTERIZATION. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 279-291.	3.4	4
43	Fluorescently labeled degradable thermoplastic polyurethane elastomers: Visual evaluation for the degradation behavior. Journal of Applied Polymer Science, 2015, 132, .	2.6	4
44	Multifunctional oligomer immobilized on quartz crystal microbalance: a facile and stabilized molecular imprinting strategy for glycoprotein detection. Analytical and Bioanalytical Chemistry, 2019, 411, 3941-3949.	3.7	4
45	Zn(<scp>ii</scp>)-Dipicolylamine analogues with amphiphilic side chains endow low molecular weight PEI with high transfection performance. Biomaterials Science, 2021, 9, 3090-3099.	5.4	2
46	Construction of waterborne superhydrophobic coatings with controlled waterâ€droplet adhesion. Journal of Applied Polymer Science, 2022, 139, 51482.	2.6	2
47	Zinc(II)-Cyclen Multifunctional Complex Module-Mediated Polycation-Based High-Performance pDNA Vectors. ACS Biomaterials Science and Engineering, 2021, 7, 5678-5689.	5.2	2
48	Compatibilizing Effect of Poly(Styrene-block-2-Vinylpyridine) Copolymer on Polystyrene/Ethylene-Based Ionomer Resin Blends. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 199-211.	3.4	1
49	Zinc(II)â€Dipicolylamine Analogs Mediated PEI1.8k/pDNA Vector: Effect of Ligand Structure on the Gene Transport Process. Macromolecular Bioscience, 2021, 21, 2100048.	4.1	0
50	Bioreducible Zinc (II)-Coordinative Polyethylenimine with Low Molecular Weight for Robust Gene Delivery of Primary and Stem Cells. Biomaterial Engineering, 2021, , 1-13.	0.2	0
51	Bioreducible Zinc (II)-Coordinative Polyethylenimine with Low Molecular Weight for Robust Gene Delivery of Primary and Stem Cells. Biomaterial Engineering, 2022, , 381-393.	0.2	Ο