
Andis Klegeris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/759684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. British Journal of Pharmacology, 2003, 139, 775-786.	5.4	216
2	α-Synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiology of Aging, 2008, 29, 739-752.	3.1	202
3	Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochemistry International, 2018, 120, 149-163.	3.8	192
4	Therapeutic approaches to inflammation in neurodegenerative disease. Current Opinion in Neurology, 2007, 20, 351-357.	3.6	178
5	Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Molecular and Cellular Neurosciences, 2020, 105, 103493.	2.2	169
6	Thrombin and Prothrombin Are Expressed by Neurons and Glial Cells and Accumulate in Neurofibrillary Tangles in Alzheimer Disease Brain. Journal of Neuropathology and Experimental Neurology, 2006, 65, 19-25.	1.7	163
7	LRRK2 Expression in Normal and Pathologic Human Brain and in Human Cell Lines. Journal of Neuropathology and Experimental Neurology, 2006, 65, 953-963.	1.7	154
8	The biological activity of auranofin: implications for novel treatment of diseases. Inflammopharmacology, 2012, 20, 297-306.	3.9	152
9	Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. Journal of Neuroimmunology, 2014, 273, 8-21.	2.3	150
10	?-Amyloid protein enhances macrophage production of oxygen free radicals and glutamate. Journal of Neuroscience Research, 1997, 49, 229-235.	2.9	149
11	Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Other Anti- Inflammatory Agents in the Treatment of Neurodegenerative Disease. Current Alzheimer Research, 2005, 2, 355-365.	1.4	136
12	Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opinion on Therapeutic Targets, 2019, 23, 865-882.	3.4	131
13	Alphaâ€synuclein and its diseaseâ€causing mutants induce ICAMâ€1 and ILâ€6 in human astrocytes and astrocytoma cells. FASEB Journal, 2006, 20, 2000-2008.	0.5	126
14	Impact of problem-based learning in a large classroom setting: student perception and problem-solving skills. American Journal of Physiology - Advances in Physiology Education, 2011, 35, 408-415.	1.6	113
15	Interaction of Alzheimer β-amyloid peptide with the human monocytic cell line THP-1 results in a protein kinase C-dependent secretion of tumor necrosis factor-α. Brain Research, 1997, 747, 114-121.	2.2	111
16	Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiology of Aging, 2002, 23, 787-794.	3.1	94
17	Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Research Bulletin, 2016, 125, 19-29.	3.0	84
18	Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia, 2003, 42, 417-423.	4.9	83

#	Article	IF	CITATIONS
19	Inflammation in transgenic mouse models of neurodegenerative disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 889-902.	3.8	80
20	Interferon-Î ³ -dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiology of Aging, 2009, 30, 1924-1935.	3.1	79
21	Synthesis and biological evaluation of novel pyrazolyl-2,4-thiazolidinediones as anti-inflammatory and neuroprotective agents. Bioorganic and Medicinal Chemistry, 2010, 18, 2019-2028.	3.0	79
22	Pathological Proteins in Senile Plaques Tohoku Journal of Experimental Medicine, 1994, 174, 269-277.	1.2	76
23	Neuroinflammation as a Common Mechanism Associated with the Modifiable Risk Factors for Alzheimer's and Parkinson's Diseases. Current Aging Science, 2017, 10, 158-176.	1.2	71
24	Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors. European Journal of Cell Biology, 2017, 96, 240-253.	3.6	70
25	Interaction of various intracellular signaling mechanisms involved in mononuclear phagocyte toxicity toward neuronal cells. Journal of Leukocyte Biology, 2000, 67, 127-133.	3.3	65
26	Severe vascular disturbance in a case of familial brain calcinosis. Acta Neuropathologica, 2005, 109, 643-653.	7.7	64
27	The Role of Mitochondrial Damage-Associated Molecular Patterns in Chronic Neuroinflammation. Mediators of Inflammation, 2019, 2019, 1-11.	3.0	63
28	Mitochondrial transcription factor A (Tfam) is a pro-inflammatory extracellular signaling molecule recognized by brain microglia. Molecular and Cellular Neurosciences, 2014, 60, 88-96.	2.2	57
29	Inhibition of human astrocyte and microglia neurotoxicity by calcium channel blockers. Neuropharmacology, 2012, 63, 685-691.	4.1	55
30	Insulin Modulates <i>In Vitro Secretion</i> of Cytokines and Cytotoxins by Human Glial Cells. Current Alzheimer Research, 2015, 12, 684-693.	1.4	50
31	High Glucose Enhances Neurotoxicity and Inflammatory Cytokine Secretion by Stimulated Human Astrocytes. Current Alzheimer Research, 2017, 14, 731-741.	1.4	50
32	Modulation of human microglia and THP-1 cell toxicity by cytokines endogenous to the nervous system. Neurobiology of Aging, 2005, 26, 673-682.	3.1	48
33	Microparticles: A New Perspective in Central Nervous System Disorders. BioMed Research International, 2014, 2014, 1-17.	1.9	48
34	Emerging roles of microglial cathepsins in neurodegenerative disease. Brain Research Bulletin, 2018, 139, 144-156.	3.0	46
35	Globular adiponectin induces a pro-inflammatory response in human astrocytic cells. Biochemical and Biophysical Research Communications, 2014, 446, 37-42.	2.1	44
36	Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2274-2281.	2.4	43

#	Article	IF	CITATIONS
37	Toxicity of human monocytic THP-1 cells and microglia toward SH-SY5Y neuroblastoma cells is reduced by inhibitors of 5-lipoxygenase and its activating protein FLAP. Journal of Leukocyte Biology, 2003, 73, 369-378.	3.3	40
38	Policing the Police: Astrocytes Modulate Microglial Activation. Journal of Neuroscience, 2006, 26, 3887-3888.	3.6	40
39	Functional ryanodine receptors are expressed by human microglia and THP-1 cells: Their possible involvement in modulation of neurotoxicity. Journal of Neuroscience Research, 2007, 85, 2207-2215.	2.9	40
40	Differential expression of interferon-Î ³ receptor on human glial cells in vivo and in vitro. Journal of Neuroimmunology, 2010, 225, 91-99.	2.3	40
41	Novel protective properties of auranofin: Inhibition of human astrocyte cytotoxic secretions and direct neuroprotection. Life Sciences, 2013, 92, 1072-1080.	4.3	40
42	Cardiolipin in Central Nervous System Physiology and Pathology. Cellular and Molecular Neurobiology, 2017, 37, 1161-1172.	3.3	40
43	Interleukin 1α and interleukin 6 protect human neuronal SH-SY5Y cells from oxidative damage. Neuroscience Letters, 2004, 361, 40-43.	2.1	39
44	Increase in Core Body Temperature of Alzheimer's Disease Patients as a Possible Indicator of Chronic Neuroinflammation: A Meta-Analysis. Gerontology, 2007, 53, 7-11.	2.8	38
45	STAT3 inhibitors attenuate interferon-γ-induced neurotoxicity and inflammatory molecule production by human astrocytes. Neurobiology of Disease, 2011, 41, 299-307.	4.4	37
46	Gold drug auranofin could reduce neuroinflammation by inhibiting microglia cytotoxic secretions and primed respiratory burst. Journal of Neuroimmunology, 2014, 276, 71-79.	2.3	37
47	The Saturated Fatty Acid Palmitate Induces Human Monocytic Cell Toxicity Toward Neuronal Cells: Exploring a Possible Link Between Obesity-Related Metabolic Impairments and Neuroinflammation. Journal of Alzheimer's Disease, 2012, 30, S179-S183.	2.6	36
48	Novel multi-target directed ligand-based strategies for reducing neuroinflammation in Alzheimer's disease. Life Sciences, 2018, 207, 314-322.	4.3	35
49	Synthesis and biological evaluation of novel pyrazole compounds. Bioorganic and Medicinal Chemistry, 2010, 18, 5685-5696.	3.0	34
50	Prolyl endopeptidase is revealed following SILAC analysis to be a novel mediator of human microglial and THPâ€i cell neurotoxicity. Glia, 2008, 56, 675-685.	4.9	32
51	Extracellular cardiolipin regulates select immune functions of microglia and microglia-like cells. Brain Research Bulletin, 2019, 146, 153-163.	3.0	31
52	Improvement in Generic Problem-Solving Abilities of Students by Use of Tutor-less Problem-Based Learning in a Large Classroom Setting. CBE Life Sciences Education, 2013, 12, 73-79.	2.3	30
53	Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Molecular and Cellular Neurosciences, 2018, 89, 71-79.	2.2	30
54	Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns. Neural Regeneration Research, 2021, 16, 423.	3.0	30

#	Article	IF	CITATIONS
55	Cytochrome c can be released into extracellular space and modulate functions of human astrocytes in a toll-like receptor 4-dependent manner. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129400.	2.4	29
56	Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer's Disease. Current Neuropharmacology, 2021, 19, 908-924.	2.9	29
57	Proton pump inhibitors reduce interferonâ€Î³â€induced neurotoxicity and STAT3 phosphorylation of human astrocytes. Glia, 2011, 59, 833-840.	4.9	28
58	Effects of C-reactive protein and pentosan polysulphate on human complement activation. Immunology, 2002, 106, 381-388.	4.4	27
59	Proton pump inhibitors exert anti-inflammatory effects and decrease human microglial and monocytic THP-1 cell neurotoxicity. Experimental Neurology, 2009, 217, 177-183.	4.1	27
60	S- but not R-enantiomers of flurbiprofen and ibuprofen reduce human microglial and THP-1 cell neurotoxicity. Journal of Neuroimmunology, 2004, 152, 73-77.	2.3	25
61	Inhibitory action of 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK) Tj ETQq1 1	0.784314 4.4	rgBT /Overloo 24
62	Inflammatory cytokine levels are influenced by interactions between THP-1 monocytic, U-373 MG astrocytic, and SH-SY5Y neuronal cell lines of human origin. Neuroscience Letters, 2001, 313, 41-44.	2.1	24
63	Complement activation by islet amyloid polypeptide (IAPP) and α-synuclein 112. Biochemical and Biophysical Research Communications, 2007, 357, 1096-1099.	2.1	24
64	Chymotrypsin-like proteases contribute to human monocytic THP-1 cell as well as human microglial neurotoxicity. Glia, 2005, 51, 56-64.	4.9	21
65	Adhesion of Exogenous Human Microglia and THP-1 Cells to Amyloid Plaques of Postmortem Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2008, 14, 345-352.	2.6	21
66	Potential neurotoxic activity of diverse molecules released by microglia. Neurochemistry International, 2021, 148, 105117.	3.8	21
67	Expression of complement messenger RNAs by human endothelial cells. Brain Research, 2000, 871, 1-6.	2.2	20
68	Secreted phospholipase A2 group IIA is a neurotoxin released by stimulated human glial cells. Molecular and Cellular Neurosciences, 2012, 49, 430-438.	2.2	20
69	Neuroinflammation as a mechanism linking hypertension with the increased risk of Alzheimer's disease. Neural Regeneration Research, 2022, 17, 2342.	3.0	20
70	The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ. Journal of Neuroinflammation, 2012, 9, 113.	7.2	19
71	A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases. Neural Regeneration Research, 2015, 10, 391.	3.0	19
72	The synthesis and characterization of a series of cobalt(II) β-ketoaminato complexes and their cytotoxic activity towards human tumor cell lines. Journal of Inorganic Biochemistry, 2011, 105, 858-866.	3.5	15

#	Article	IF	CITATIONS
73	Extracellular cardiolipin modulates microglial phagocytosis and cytokine secretion in a toll-like receptor (TLR) 4-dependent manner. Journal of Neuroimmunology, 2021, 353, 577496.	2.3	14
74	Dynamics of undergraduate student generic problem-solving skills captured by a campus-wide study. Higher Education, 2017, 74, 877-896.	4.4	13
75	The dietary fatty acids α-linolenic acid (ALA) and linoleic acid (LA) selectively inhibit microglial nitric oxide production. Molecular and Cellular Neurosciences, 2020, 109, 103569.	2.2	13
76	The relationship between visual stimulation, behaviour and continous release of protein in the substantia nigra. Brain Research, 1991, 560, 163-166.	2.2	11
77	Cultured adult porcine astrocytes and microglia express functional interferon-Î ³ receptors and exhibit toxicity towards SH-SY5Y cells. Brain Research Bulletin, 2011, 84, 244-251.	3.0	11
78	Cobalt(II) β-ketoaminato complexes as novel inhibitors of neuroinflammation. European Journal of Pharmacology, 2012, 676, 81-88.	3.5	10
79	Modifying the diet and gut microbiota to prevent and manage neurodegenerative diseases. Reviews in the Neurosciences, 2022, 33, 767-787.	2.9	10
80	Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Frontiers in Aging Neuroscience, 0, 14, .	3.4	10
81	Actions of the Anti-Angiogenic Compound Angiostatin in an Animal Model of Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 252-260.	1.4	9
82	Resolution-Associated Molecular Patterns (RAMPs) as Endogenous Regulators of Glia Functions in Neuroinflammatory Disease. CNS and Neurological Disorders - Drug Targets, 2020, 19, 483-494.	1.4	9
83	Pyrazole Compound 2-MBAPA as a Novel Inhibitor of Microglial Activation and Neurotoxicity in vitro and in vivo. Journal of Alzheimer's Disease, 2011, 27, 531-541.	2.6	8
84	Extracellular Cardiolipin Modulates Select Immune Functions of Astrocytes in Toll-Like Receptor (TLR) 4-Dependent Manner. Mediators of Inflammation, 2022, 2022, 1-14.	3.0	8
85	Antitumor activity of asukamycin, a secondary metabolite from the actinomycete bacterium Streptomyces nodosus subspecies asukaensis. International Journal of Molecular Medicine, 2009, 24, 711-5.	4.0	7
86	Moderate increase in temperature may exacerbate neuroinflammatory processes in the brain: Human cell culture studies. Journal of Neuroimmunology, 2011, 233, 65-72.	2.3	7
87	Mixed-mode instruction using active learning in small teams improves generic problem-solving skills of university students. Journal of Further and Higher Education, 2021, 45, 871-885.	2.5	7
88	The effects of voluntary wheel running on neuroinflammatory status: Role of monocyte chemoattractant protein-1. Molecular and Cellular Neurosciences, 2017, 79, 93-102.	2.2	6
89	Synthesis and Evaluation of Novel Pyrazole Ethandiamide Compounds as Inhibitors of Human THP-1 Monocytic Cell Neurotoxicity. Cells, 2019, 8, 655.	4.1	6
90	Modulation of microglial functions by methyl jasmonate. Neural Regeneration Research, 2018, 13, 1290.	3.0	6

#	Article	IF	CITATIONS
91	Diversity and Regulation of Astrocyte Neurotoxicity in Alzheimer's Disease. Current Alzheimer Research, 2021, 18, 925-938.	1.4	5
92	Elucidating the link between the modifiable risk factors of Alzheimer's disease and neuroinflammation. Neurodegenerative Disease Management, 2016, 6, 375-384.	2.2	4
93	Comparison of student marks obtained by an assessment panel reveals generic problem-solving skills and academic ability as distinct skill sets. Compare, 2018, 48, 674-685.	2.1	4
94	Characterization of novel kainic acid analogs as inhibitors of select microglial functions. European Journal of Pharmacology, 2019, 851, 25-35.	3.5	4
95	Targeting neuroprotective functions of astrocytes in neuroimmune diseases. Expert Opinion on Therapeutic Targets, 2021, 25, 237-241.	3.4	4
96	Modifiable risk factors of Alzheimer's disease and neuroinflammation: what are the links?. Future Neurology, 2016, 11, 237-244.	0.5	3
97	Possible role of microparticles in neuroimmune signaling of microglial cells. Neuroimmunology and Neuroinflammation, 2016, 3, 232.	1.4	3
98	Dietary fats modulate neuroinflammation in mucin 2 knock out mice model of spontaneous colitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166336.	3.8	2
99	Non-linear improvement in generic problem-solving skills of university students: a longitudinal study. Higher Education Research and Development, 2019, 38, 1432-1444.	2.9	1
100	Palmitate and ceramide induce human monocytic cell toxicity towards neuronal cells. FASEB Journal, 2012, 26, 570.8.	0.5	0
101	Novel kainoid analogs as inhibitors of neuroinflammation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-1-1.	0.0	0
102	Instructing introductory pharmacology in large undergraduate classes by using clinical problem-based learning (PBL) cases improves the generic problem-solving skills of students. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-7-9.	0.0	0
103	The Effects of Fatty Acids on Brain Microglia Immune Responses. FASEB Journal, 2018, 32, 813.2-813.2.	0.5	0