Steven J Mennerick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7596811/publications.pdf

Version: 2024-02-01

38742 36028 10,668 160 50 97 citations h-index g-index papers 166 166 166 11260 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Physiological markers of rapid antidepressant effects of allopregnanolone. Journal of Neuroendocrinology, 2022, 34, e13023.	2.6	5
2	Nitrous Oxide, a Rapid Antidepressant, Has Ketamine-like Effects on Excitatory Transmission in the Adult Hippocampus. Biological Psychiatry, 2022, 92, 964-972.	1.3	12
3	A neuroactive steroid with a therapeutically interesting constellation of actions at GABAA and NMDA receptors. Neuropharmacology, 2021, 183, 108358.	4.1	6
4	Oxysterols Modulate the Acute Effects of Ethanol on Hippocampal <i>N</i> -Methyl-d-Aspartate Receptors, Long-Term Potentiation, and Learning. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 181-188.	2.5	7
5	Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity. Biological Psychiatry, 2021, 90, 766-780.	1.3	10
6	A Proinflammatory Stimulus Disrupts Hippocampal Plasticity and Learning via Microglial Activation and 25-Hydroxycholesterol. Journal of Neuroscience, 2021, 41, 10054-10064.	3.6	27
7	Cognitive deficits and impaired hippocampal long-term potentiation in K _{ATP} -induced DEND syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
8	Pharmacological and Biophysical Characteristics of Picrotoxin-Resistant, Î'Subunit-Containing GABAA Receptors. Frontiers in Synaptic Neuroscience, 2021, 13, 763411.	2.5	1
9	Effects of CYP46A1 Inhibition on Long-Term-Depression in Hippocampal Slices ex vivo and 24S-Hydroxycholesterol Levels in Mice in vivo. Frontiers in Molecular Neuroscience, 2020, 13, 568641.	2.9	12
10	l̂ subunitâ€containing GABA A IPSCs are driven by both synaptic and diffusional GABA in mouse dentate granule neurons. Journal of Physiology, 2020, 598, 1205-1221.	2.9	10
11	Lack of Neurosteroid Selectivity at $\hat{\Gamma}$ vs. $\hat{\Gamma}^3$ 2-Containing GABAA Receptors in Dentate Granule Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 6.	2.9	12
12	Mild chronic perturbation of inhibition severely alters hippocampal function. Scientific Reports, 2019, 9, 16431.	3.3	4
13	Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiology of Stress, 2019, 11, 100196.	4.0	249
14	Visualizing pregnenolone sulfate-like modulators of NMDA receptor function reveals intracellular and plasma-membrane localization. Neuropharmacology, 2019, 144, 91-103.	4.1	9
15	Positive Allosteric Modulation as a Potential Therapeutic Strategy in Anti-NMDA Receptor Encephalitis. Journal of Neuroscience, 2018, 38, 3218-3229.	3.6	39
16	A Clickable Oxysterol Photolabel Retains NMDA Receptor Activity and Accumulates in Neurons. Frontiers in Neuroscience, 2018, 12, 923.	2.8	4
17	P1‶94: TRACKING THE INTRACELLULAR ITINERARY OF APP AND <i>DE NOVO</i> AMYLOID BETA GENERATION USING CLICK CHEMISTRY. Alzheimer's and Dementia, 2018, 14, P353.	0.8	0
18	Chemogenetic Isolation Reveals Synaptic Contribution of \hat{l} GABA $<$ sub $>$ A $<$ /sub $>$ Receptors in Mouse Dentate Granule Neurons. Journal of Neuroscience, 2018, 38, 8128-8145.	3.6	21

#	Article	IF	Citations
19	Enhanced GABAergic actions resulting from the coapplication of the steroid 3α-hydroxy-5α-pregnane-11,20-dione (alfaxalone) with propofol or diazepam. Scientific Reports, 2018, 8, 10341.	3.3	26
20	Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation. PLoS ONE, 2018, 13, e0195520.	2.5	10
21	Differential Presynaptic ATP Supply for Basal and High-Demand Transmission. Journal of Neuroscience, 2017, 37, 1888-1899.	3.6	55
22	Contributions of space-clamp errors to apparent time-dependent loss of Mg ²⁺ block induced by NMDA. Journal of Neurophysiology, 2017, 118, 532-543.	1.8	0
23	24S-hydroxycholesterol and 25-hydroxycholesterol differentially impact hippocampal neuronal survival following oxygen-glucose deprivation. PLoS ONE, 2017, 12, e0174416.	2.5	29
24	Endogenous 24 <i>S</i> -hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. Journal of Neurophysiology, 2016, 115, 1263-1272.	1.8	53
25	A Clickable Analogue of Ketamine Retains NMDA Receptor Activity, Psychoactivity, and Accumulates in Neurons. Scientific Reports, 2016, 6, 38808.	3.3	13
26	Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature, 2016, 540, 74-79.	27.8	190
27	Ketamine: NMDA Receptors and Beyond. Journal of Neuroscience, 2016, 36, 11158-11164.	3.6	147
28	A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature, 2016, 534, 538-543.	27.8	534
29	A clickable neurosteroid photolabel reveals selective Golgi compartmentalization with preferential impact on proximal inhibition. Neuropharmacology, 2016, 108, 193-206.	4.1	19
30	Comparison of Steroid Modulation of Spontaneous Inhibitory Postsynaptic Currents in Cultured Hippocampal Neurons and Steady-State Single-Channel Currents from Heterologously Expressed $\langle i \rangle \hat{1} \pm \langle i \rangle 1 + \langle i \rangle \hat{1}^2 \langle i \rangle 2 + \langle i \rangle \hat{1}^3 \langle i \rangle 2$ L GABA $\langle sub \rangle A \langle sub \rangle$ Receptors. Molecular Pharmacology, 2016, 89, 399-406.	2.3	7
31	24(S)-Hydroxycholesterol as a Modulator of Neuronal Signaling and Survival. Neuroscientist, 2016, 22, 132-144.	3 . 5	75
32	Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy. Frontiers in Psychiatry, 2015, 6, 172.	2.6	43
33	Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro. Journal of Neuroscience, 2015, 35, 11105-11117.	3.6	19
34	Quantification of bursting and synchrony in cultured hippocampal neurons. Journal of Neurophysiology, 2015, 114, 1059-1071.	1.8	29
35	Interaction between positive allosteric modulators and trapping blockers of the <scp>NMDA</scp> receptor channel. British Journal of Pharmacology, 2015, 172, 1333-1347.	5.4	29
36	$\langle i \rangle \hat{l}^3 \langle i \rangle$ -Aminobutyric Acid Type A $\langle i \rangle \hat{l}^{\pm} \langle i \rangle 4$, $\langle i \rangle \hat{l}^2 \langle i \rangle 2$, and $\langle i \rangle \hat{l}' \langle i \rangle$ Subunits Assemble to Produce More Than One Functionally Distinct Receptor Type. Molecular Pharmacology, 2014, 86, 647-656.	2.3	35

#	Article	IF	CITATIONS
37	The neurosteroid 5βâ€pregnanâ€3αâ€olâ€20â€one enhances actions of etomidate as a positive allosteric modul of α1β2γ2 <scp>L GABA_A</scp> receptors. British Journal of Pharmacology, 2014, 171, 5446-5457.	ator 5.4	21
38	Phosphatidylinositol 4,5-bisphosphate depletion fails to affect neurosteroid modulation of GABAA receptor function. Psychopharmacology, 2014, 231, 3493-3501.	3.1	4
39	Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol, 2014, 48, 1-17.	1.7	135
40	Fast Phasic Release Properties of Dopamine Studied with a Channel Biosensor. Journal of Neuroscience, 2014, 34, 11792-11802.	3.6	16
41	Neurosteroid Analogues. 18. Structure–Activity Studies of <i>ent</i> -Steroid Potentiators of γ-Aminobutyric Acid Type A Receptors and Comparison of Their Activities with Those of Alphaxalone and Allopregnanolone. Journal of Medicinal Chemistry, 2014, 57, 171-190.	6.4	28
42	11-trifluoromethyl-phenyldiazirinyl neurosteroid analogues: potent general anesthetics and photolabeling reagents for GABAA receptors. Psychopharmacology, 2014, 231, 3479-3491.	3.1	12
43	A Mechanism Regulating G Protein-coupled Receptor Signaling That Requires Cycles of Protein Palmitoylation and Depalmitoylation. Journal of Biological Chemistry, 2014, 289, 6249-6257.	3.4	36
44	Different oxysterols have opposing actions at N-methyl-d-aspartate receptors. Neuropharmacology, 2014, 85, 232-242.	4.1	69
45	The Major Brain Cholesterol Metabolite 24(S)-Hydroxycholesterol Is a Potent Allosteric Modulator of <i>N < /i> - Methyl-d-Aspartate Receptors. Journal of Neuroscience, 2013, 33, 17290-17300.</i>	3.6	204
46	Indistinguishable Synaptic Pharmacodynamics of the $\langle i \rangle N \langle i \rangle$ -Methyl-d-Aspartate Receptor Channel Blockers Memantine and Ketamine. Molecular Pharmacology, 2013, 84, 935-947.	2.3	55
47	Neurosteroids, stress and depression: Potential therapeutic opportunities. Neuroscience and Biobehavioral Reviews, 2013, 37, 109-122.	6.1	158
48	Detection of submillisecond spike timing differences based on delay-line anticoincidence detection. Journal of Neurophysiology, 2013, 110, 2295-2311.	1.8	23
49	Noncompetitive, Voltage-Dependent NMDA Receptor Antagonism by Hydrophobic Anions. Molecular Pharmacology, 2013, 83, 354-366.	2.3	12
50	Neurosteroids as Therapeutic Leads in Psychiatry. JAMA Psychiatry, 2013, 70, 659.	11.0	20
51	Retrograde Fluorescent Labeling Allows for Targeted Extracellular Single-unit Recording from Identified Neurons & ht;em>In vivo. Journal of Visualized Experiments, 2013, , .	0.3	11
52	GIRK channel modulation by assembly with allosterically regulated RGS proteins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19977-19982.	7.1	38
53	Astrocyte-Derived Thrombospondins Mediate the Development of Hippocampal Presynaptic Plasticity (i>In Vitro (i>. Journal of Neuroscience, 2012, 32, 13100-13110.	3.6	51
54	Cross talk between synaptic receptors mediates NMDA-induced suppression of inhibition. Journal of Neurophysiology, 2012, 107, 2532-2540.	1.8	7

#	Article	IF	CITATIONS
55	Synaptic NMDA Receptors Mediate Hypoxic Excitotoxic Death. Journal of Neuroscience, 2012, 32, 6732-6742.	3.6	122
56	Characteristics of concatemeric GABA $<$ sub $>$ A $<$ /sub $>$ receptors containing $\hat{l}\pm4 \hat{l}'$ subunits expressed in $<$ i $>Xenopus<$ /i $>$ 0 oocytes. British Journal of Pharmacology, 2012, 165, 2228-2243.	5.4	43
57	Presynaptically Silent Synapses. Neuroscientist, 2012, 18, 216-223.	3.5	32
58	Differential Requirement for Protein Synthesis in Presynaptic Unmuting and Muting in Hippocampal Glutamate Terminals. PLoS ONE, 2012, 7, e51930.	2.5	7
59	Neurosteroid Analogues. 17. Inverted Binding Orientations of Androsterone Enantiomers at the Steroid Potentiation Site on Î ³ -Aminobutyric Acid Type A Receptors. Journal of Medicinal Chemistry, 2012, 55, 1334-1345.	6.4	20
60	Calcium-Independent Inhibitory G-Protein Signaling Induces Persistent Presynaptic Muting of Hippocampal Synapses. Journal of Neuroscience, 2011, 31, 979-991.	3.6	18
61	Neurosteroid Analogues. 16. A New Explanation for the Lack of Anesthetic Effects of Î" ¹⁶ -Alphaxalone and Identification of a Î" ¹⁷⁽²⁰⁾ Analogue with Potent Anesthetic Activity. Journal of Medicinal Chemistry, 2011, 54, 3926-3934.	6.4	5
62	Excitotoxicity Triggered by Neurobasal Culture Medium. PLoS ONE, 2011, 6, e25633.	2.5	40
63	Differential Effects of Axon Initial Segment and Somatodendritic GABA _A Receptors on Excitability Measures in Rat Dentate Granule Neurons. Journal of Neurophysiology, 2011, 105, 366-379.	1.8	17
64	Hydrophobic anions potently and uncompetitively antagonize GABA A receptor function in the absence of a conventional binding site. British Journal of Pharmacology, 2011, 164, 667-680.	5.4	17
65	Don't curse the darkness, light a candle: fluorescence studies of axon excitability. Journal of Physiology, 2011, 589, 4087-4087.	2.9	0
66	Presynaptic silencing is an endogenous neuroprotectant during excitotoxic insults. Neurobiology of Disease, 2011, 43, 516-525.	4.4	24
67	Nicotinamide mononucleotide adenylyl transferase 1 protects against acute neurodegeneration in developing CNS by inhibiting excitotoxic-necrotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19054-19059.	7.1	52
68	Input-output: The Role of Undergraduate Curriculum in Successful Graduate Training in the Neurosciences. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2011, 10, E2-6.	0.0	4
69	Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons. Hippocampus, 2010, 20, 558-571.	1.9	49
70	Presynaptically Silent Synapses Studied with Light Microscopy. Journal of Visualized Experiments, 2010, , .	0.3	11
71	Neurosteroid analogues. 15. A comparative study of the anesthetic and GABAergic actions of alphaxalone, î"16-alphaxalone and their corresponding 17-carbonitrile analogues. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6680-6684.	2.2	15
72	Structurally diverse amphiphiles exhibit biphasic modulation of GABA _A receptors: similarities and differences with neurosteroid actions. British Journal of Pharmacology, 2010, 160, 130-141.	5.4	19

#	Article	IF	CITATIONS
73	Kinetic and Structural Determinants for GABA-A Receptor Potentiation by Neuroactive Steroids. Current Neuropharmacology, 2010, 8, 18-25.	2.9	21
74	Rapid Activation of Dormant Presynaptic Terminals by Phorbol Esters. Journal of Neuroscience, 2010, 30, 10048-10060.	3.6	8
75	A Synthetic 18-Norsteroid Distinguishes between Two Neuroactive Steroid Binding Sites on GABA _A Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 404-413.	2.5	22
76	Magnesium induces neuronal apoptosis by suppressing excitability. Cell Death and Disease, 2010, 1, e63-e63.	6.3	36
77	Dynamic Modulation of Phasic and Asynchronous Glutamate Release in Hippocampal Synapses. Journal of Neurophysiology, 2010, 103, 392-401.	1.8	14
78	Diverse Voltage-Sensitive Dyes Modulate GABA _A Receptor Function. Journal of Neuroscience, 2010, 30, 2871-2879.	3.6	67
79	The sticky issue of neurosteroids and GABAA receptors. Trends in Neurosciences, 2010, 33, 299-306.	8.6	89
80	The Influence of Neuroactive Steroid Lipophilicity on GABA _A Receptor Modulation: Evidence for a Low-Affinity Interaction. Journal of Neurophysiology, 2009, 102, 1254-1264.	1.8	56
81	Adenylyl Cyclases 1 and 8 Initiate a Presynaptic Homeostatic Response to Ethanol Treatment. PLoS ONE, 2009, 4, e5697.	2.5	42
82	Photodynamic Effects of Steroid-Conjugated Fluorophores on GABA _A Receptors. Molecular Pharmacology, 2009, 76, 754-765.	2.3	3
83	Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiology of Disease, 2009, 34, 1-10.	4.4	184
84	The influence of the membrane on neurosteroid actions at GABAA receptors. Psychoneuroendocrinology, 2009, 34, S59-S66.	2.7	44
85	NMDA potentiation by visible light in the presence of a fluorescent neurosteroid analogue. Journal of Physiology, 2009, 587, 2937-2947.	2.9	6
86	Action potential initiation and propagation: Upstream influences on neurotransmission. Neuroscience, 2009, 158, 211-222.	2.3	103
87	Comparative Effects of Heterologous TRPV1 and TRPM8 Expression in Rat Hippocampal Neurons. PLoS ONE, 2009, 4, e8166.	2.5	23
88	Neurosteroid analogues. 12. Potent enhancement of GABA-mediated chloride currents at GABAA receptors by ent-androgens. European Journal of Medicinal Chemistry, 2008, 43, 107-113.	5 . 5	30
89	Effects on Membrane Capacitance of Steroids with Antagonist Properties at GABAA Receptors. Biophysical Journal, 2008, 95, 176-185.	0.5	16
90	Endocytosis Is Required for Synaptic Activity-Dependent Release of Amyloid-Î ² In Vivo. Neuron, 2008, 58, 42-51.	8.1	535

#	Article	IF	Citations
91	Neurosteroid Analogues. 14. Alternative Ring System Scaffolds: GABA Modulatory and Anesthetic Actions of Cyclopenta[b]phenanthrenes and Cyclopenta[b]anthracenes. Journal of Medicinal Chemistry, 2008, 51, 1309-1318.	6.4	11
92	A Specific Role for Ca ²⁺ -Dependent Adenylyl Cyclases in Recovery from Adaptive Presynaptic Silencing. Journal of Neuroscience, 2008, 28, 5159-5168.	3.6	49
93	High Threshold, Proximal Initiation, and Slow Conduction Velocity of Action Potentials in Dentate Granule Neuron Mossy Fibers. Journal of Neurophysiology, 2008, 100, 281-291.	1.8	71
94	Actions of Anesthetics on Excitatory Transmitter-Gated Channels. , 2008, , 53-84.		17
95	Synaptic Transmission Dynamically Modulates Interstitial Fluid Amyloid- \hat{l}^2 Levels. Research and Perspectives in Alzheimer's Disease, 2008, , 133-143.	0.1	1
96	Vesicle Pool Heterogeneity at Hippocampal Glutamate and GABA Synapses. Journal of Neuroscience, 2007, 27, 9846-9854.	3.6	52
97	Action Potential Initiation and Propagation in CA3 Pyramidal Axons. Journal of Neurophysiology, 2007, 97, 3460-3472.	1.8	146
98	Astrocyte membrane responses and potassium accumulation during neuronal activity. Hippocampus, 2007, 17, 1100-1108.	1.9	58
99	Neurosteroid migration to intracellular compartments reduces steroid concentration in the membrane and diminishes GABAâ€A receptor potentiation. Journal of Physiology, 2007, 584, 789-800.	2.9	36
100	Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light. Nature Neuroscience, 2007, 10, 523-530.	14.8	21
101	Cyclodextrins sequester neuroactive steroids and differentiate mechanisms that rate limit steroid actions. British Journal of Pharmacology, 2007, 150, 164-175.	5.4	34
102	Antagonism of neurosteroid modulation of native \hat{I}^3 -aminobutyric acid receptors by $(3\hat{I}\pm,5\hat{I}\pm)-17$ -phenylandrost-16-en-3-ol. European Journal of Pharmacology, 2007, 572, 94-101.	3.5	13
103	Mechanisms of neurosteroid interactions with GABAA receptors., 2007, 116, 35-57.		136
104	Neurosteroid Analogues. 11. Alternative Ring System Scaffolds:  γ-Aminobutyric Acid Receptor Modulation and Anesthetic Actions of Benz[f]indenes. Journal of Medicinal Chemistry, 2006, 49, 4595-4605.	6.4	13
105	Homeostatic Regulation of Glutamate Release in Response to Depolarization. Molecular Neurobiology, 2006, 33, 133-154.	4.0	21
106	A spontaneous tonic chloride conductance in solitary glutamatergic hippocampal neurons. Brain Research, 2006, 1118, 66-74.	2.2	6
107	Synaptic Vesicles: Turning Reluctance Into Action. Neuroscientist, 2006, 12, 11-15.	3.5	12
108	Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12505-12510.	7.1	34

#	Article	IF	CITATIONS
109	Physiological Activity Depresses Synaptic Function through an Effect on Vesicle Priming. Journal of Neuroscience, 2006, 26, 6618-6626.	3.6	49
110	Action potential fidelity during normal and epileptiform activity in paired soma-axon recordings from rat hippocampus. Journal of Physiology, 2005, 566, 425-441.	2.9	81
111	Calcium-Stimulated Adenylyl Cyclases Modulate Ethanol-Induced Neurodegeneration in the Neonatal Brain. Journal of Neuroscience, 2005, 25, 2376-2385.	3.6	38
112	Neurosteroid Access to the GABAA Receptor. Journal of Neuroscience, 2005, 25, 11605-11613.	3.6	144
113	Reluctant Vesicles Contribute to the Total Readily Releasable Pool in Glutamatergic Hippocampal Neurons. Journal of Neuroscience, 2005, 25, 3842-3850.	3.6	138
114	An integrated functional genomics and metabolomics approach for defining poor prognosis in human neuroendocrine cancers. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9901-9906.	7.1	102
115	Neurosteroid Analogues. 10. The Effect of Methyl Group Substitution at the C-6 and C-7 Positions on the GABA Modulatory and Anesthetic Actions of $(3\hat{l}_{\pm},5\hat{l}_{\pm})$ - and $(3\hat{l}_{\pm},5\hat{l}^{2})$ -3-Hydroxypregnan-20-one. Journal of Medicinal Chemistry, 2005, 48, 3051-3059.	6.4	19
116	New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of $5\hat{l}_{\pm}$ -reduced neuroactive steroids. Pain, 2005, 114, 429-443.	4.2	121
117	Reluctant Vesicles Coaxed into the Limelight. Neuron, 2005, 46, 523-525.	8.1	2
118	Synaptic Activity Regulates Interstitial Fluid Amyloid-β Levels In Vivo. Neuron, 2005, 48, 913-922.	8.1	1,060
119	Astrocytes exert a pro-apoptotic effect on neurons in postnatal hippocampal cultures. Neuroscience, 2005, 131, 349-358.	2.3	12
120	Selective Effects of Potassium Elevations on Glutamate Signaling and Action Potential Conduction in Hippocampus. Journal of Neuroscience, 2004, 24, 197-206.	3.6	86
121	Selective Antagonism of 5α-Reduced Neurosteroid Effects at GABAA Receptors. Molecular Pharmacology, 2004, 65, 1191-1197.	2.3	81
122	Neuroactive Steroid Interactions with Voltage-Dependent Anion Channels: Lack of Relationship to GABAA Receptor Modulation and Anesthesia. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 502-511.	2.5	34
123	Slow Actions of Neuroactive Steroids at GABAA Receptors. Journal of Neuroscience, 2004, 24, 6667-6675.	3.6	102
124	Plastic Elimination of Functional Glutamate Release Sites by Depolarization. Neuron, 2004, 42, 423-435.	8.1	55
125	Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Annals of Neurology, 2003, 54, 251-256.	5.3	176
126	Activationâ€Dependent Properties of Pregnenolone Sulfate Inhibition of GABA A Receptorâ€Mediated Current. Journal of Physiology, 2003, 550, 679-691.	2.9	62

#	Article	IF	CITATIONS
127	Neurosteroid Analogues. 9. Conformationally Constrained Pregnanes:  Structureâ^'Activity Studies of 13,24-Cyclo-18,21-dinorcholane Analogues of the GABA Modulatory and Anesthetic Steroids (3α,5α)- and (3α,5β)-3-Hydroxypregnan-20-one. Journal of Medicinal Chemistry, 2003, 46, 5334-5348.	6.4	31
128	Feeding Hungry Neurons. Neuron, 2003, 37, 187-189.	8.1	12
129	Photoaffinity Labeling with a Neuroactive Steroid Analogue. Journal of Biological Chemistry, 2003, 278, 13196-13206.	3.4	70
130	Homeostatic Effects of Depolarization on Ca ²⁺ Influx, Synaptic Signaling, and Survival. Journal of Neuroscience, 2003, 23, 1825-1831.	3.6	44
131	Potentiation and Inhibition of GABAA Receptor Function by Neuroactive Steroids. Frontiers in Neuroscience, 2003, , .	0.0	2
132	Neuroprotective agent riluzole potentiates postsynaptic GABAA receptor function. Neuropharmacology, 2002, 42, 199-209.	4.1	68
133	Ethanol-Induced Death of Postnatal Hippocampal Neurons. Neurobiology of Disease, 2002, 10, 396-409.	4.4	43
134	$3\hat{l}^2$ -Hydroxypregnane Steroids Are Pregnenolone Sulfate-Like GABAAReceptor Antagonists. Journal of Neuroscience, 2002, 22, 3366-3375.	3.6	141
135	Contribution of Presynaptic Na ⁺ Channel Inactivation to Paired-Pulse Synaptic Depression in Cultured Hippocampal Neurons. Journal of Neurophysiology, 2002, 87, 925-936.	1.8	53
136	Recent developments in structure–activity relationships for steroid modulators of GABAA receptors. Brain Research Reviews, 2001, 37, 91-97.	9.0	73
137	Redox Modulation of T-Type Calcium Channels in Rat Peripheral Nociceptors. Neuron, 2001, 31, 75-85.	8.1	230
138	Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Glia, 2001, 33, 24-35.	4.9	24
139	Neural Activity and Survival in the Developing Nervous System. Molecular Neurobiology, 2000, 22, 041-054.	4.0	111
140	Pregnenolone Sulfate Modulates Inhibitory Synaptic Transmission by Enhancing GABA _A Receptor Desensitization. Journal of Neuroscience, 2000, 20, 3571-3579.	3.6	93
141	Slow Death of Postnatal Hippocampal Neurons by GABAAReceptor Overactivation. Journal of Neuroscience, 2000, 20, 3147-3156.	3.6	45
142	Neurosteroid Analogues. 8. Structureâ 'Activity Studies of N-Acylated 17a-Aza-D-homosteroid Analogues of the Anesthetic Steroids $(3\hat{1}\pm,5\hat{1}\pm)$ - and $(3\hat{1}\pm,5\hat{1}^2)$ -3-Hydroxypregnan-20-one. Journal of Medicinal Chemistry, 2000, 43, 3201-3204.	6.4	24
143	Selective Depression of Low–Release Probability Excitatory Synapses by Sodium Channel Blockers. Neuron, 2000, 26, 671-682.	8.1	100
144	Substrate Turnover by Transporters Curtails Synaptic Glutamate Transients. Journal of Neuroscience, 1999, 19, 9242-9251.	3.6	98

#	ARTICLE	IF	Citations
145	Pregnenolone sulfate and dehydroepiandrosterone sulfate inhibit GABA-gated chloride currents in Xenopus oocytes expressing picrotoxin-insensitive GABAA receptors. Neuropharmacology, 1999, 38, 267-271.	4.1	55
146	Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Medicine, 1998, 4, 460-463.	30.7	633
147	Temporal ordering of pathogenic events following transient global ischemia. Brain Research, 1998, 790, 1-13.	2.2	53
148	Enantioselective modulation of GABAergic synaptic transmission by steroids and benz[e]indenes in hippocampal microcultures., 1998, 29, 162-171.		30
149	[43] Measurement of glial transport currents in microcultures: Application to excitatory neurotransmission. Methods in Enzymology, 1998, 296, 632-645.	1.0	2
150	Effect of Nitrous Oxide on Excitatory and Inhibitory Synaptic Transmission in Hippocampal Cultures. Journal of Neuroscience, 1998, 18, 9716-9726.	3 . 6	181
151	Rapid calcium-current kinetics in synaptic terminals of goldfish retinal bipolar neurons. Visual Neuroscience, 1998, 15, 1051-1056.	1.0	21
152	Neuronal Expression of the Glutamate Transporter GLT-1 in Hippocampal Microcultures. Journal of Neuroscience, 1998, 18, 4490-4499.	3.6	140
153	Static and Dynamic Membrane Properties of Large-Terminal Bipolar Cells From Goldfish Retina: Experimental Test of a Compartment Model. Journal of Neurophysiology, 1997, 78, 51-62.	1.8	44
154	Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons. Neuron, 1996, 17, 1241-1249.	8.1	233
155	Components of glial responses to exogenous and synaptic glutamate in rat hippocampal microcultures. Journal of Neuroscience, 1996, 16, 55-64.	3.6	70
156	Assessment of Synaptic Effects of Nitric Oxide in Hippocampal Neurons. Methods in Neurosciences, 1996, 31, 282-299.	0.5	12
157	Swelling of MÃ $^{1}\!\!/\!4$ ller cells induced by AP3 and glutamate transport substrates in rat retina. , 1996, 17, 285-293.		22
158	Pharmacological and physiological properties of a putative ganglionic nicotinic receptor, $\hat{l}\pm3\hat{l}^24$, expressed in transfected eucaryotic cells. Molecular Brain Research, 1995, 28, 101-109.	2.3	59
159	Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature, 1994, 368, 59-62.	27.8	317
160	Studies of Glial Glutamate Transporters in Hippocampal Microcultures. , 0, , 217-238.		0