John m Baust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7596692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CELL VIABILITY IMPROVES FOLLOWING INHIBITION OF CRYOPRESERVATION-INDUCED APOPTOSIS. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 262.	0.7	161
2	A Molecular Basis of Cryopreservation Failure and its Modulation to Improve Cell Survival. Cell Transplantation, 2001, 10, 561-571.	1.2	134
3	Chemo-Cryo Combination Therapy: An Adjunctive Model for the Treatment of Prostate Cancer. Cryobiology, 2001, 42, 274-285.	0.3	107
4	Molecular Mechanisms of Cellular Demise Associated with Cryopreservation Failure. Cell Preservation Technology, 2002, 1, 17-31.	0.8	104
5	Addition of anticancer agents enhances freezing-induced prostate cancer cell death: implications of mitochondrial involvement. Cryobiology, 2004, 49, 45-61.	0.3	71
6	Cryosurgical technique: Assessment of the fundamental variables using human prostate cancer model systems. Cryobiology, 2007, 55, 189-199.	0.3	66
7	Cryoablation of Renal Cancer: Variables Involved in Freezing-Induced Cell Death. Technology in Cancer Research and Treatment, 2007, 6, 69-79.	0.8	62
8	Cryopreservation of Isolated Primary Rat Hepatocytes. Annals of Surgery, 2005, 241, 125-133.	2.1	59
9	The pathophysiology of thermoablation: optimizing cryoablation. Current Opinion in Urology, 2009, 19, 127-132.	0.9	56
10	Gene Activation of the Apoptotic Caspase Cascade Following Cryogenic Storage. Cell Preservation Technology, 2002, 1, 63-80.	0.8	51
11	Best practices for cryopreserving, thawing, recovering, and assessing cells. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 855-871.	0.7	49
12	Modulation of the cryopreservation cap: elevated survival with reduced dimethyl sulfoxide concentration. Cryobiology, 2002, 45, 97-108.	0.3	44
13	Cryoablation: physical and molecular basis with putative immunological consequences. International Journal of Hyperthermia, 2019, 36, 10-16.	1.1	36
14	Cryoablative response of prostate cancer cells is influenced by androgen receptor expression. BJU International, 2008, 101, 1310-1316.	1.3	35
15	Long-Term Function of Cryopreserved Rat Hepatocytes in a Coculture System. Cell Transplantation, 2004, 13, 187-195.	1.2	34
16	The unfolded protein response in human corneal endothelial cells following hypothermic storage: Implications of a novel stress pathway. Cryobiology, 2011, 63, 46-55.	0.3	30
17	Vitamin D ₃ cryosensitization increases prostate cancer susceptibility to cryoablation via mitochondrialâ€mediated apoptosis and necrosis. BJU International, 2012, 109, 949-958.	1.3	29
18	Changing Paradigms in Biopreservation. Biopreservation and Biobanking, 2009, 7, 3-12.	0.5	26

John m Baust

#	Article	IF	CITATIONS
19	Role of Vitamin D3 as a Sensitizer to Cryoablation in a Murine Prostate Cancer Model: Preliminary In Vivo Study. Urology, 2010, 76, 764.e14-764.e20.	0.5	23
20	Development of a Tissue Engineered Human Prostate Tumor Equivalent for Use in the Evaluation of Cryoablative Techniques. Technology in Cancer Research and Treatment, 2007, 6, 81-89.	0.8	19
21	Biobanking: The Future of Cell Preservation Strategies. Advances in Experimental Medicine and Biology, 2015, 864, 37-53.	0.8	18
22	Defeating Cancers' Adaptive Defensive Strategies Using Thermal Therapies: Examining Cancer's Therapeutic Resistance, Ablative, and Computational Modeling Strategies as a means for Improving Therapeutic Outcome. Technology in Cancer Research and Treatment, 2018, 17, 153303381876220.	0.8	18
23	Characterization of Pancreatic Cancer Cell Thermal Response to Heat Ablation or Cryoablation. Technology in Cancer Research and Treatment, 2017, 16, 393-405.	0.8	17
24	Assessment of the Impact of Post-Thaw Stress Pathway Modulation on Cell Recovery following Cryopreservation in a Hematopoietic Progenitor Cell Model. Cells, 2022, 11, 278.	1.8	15
25	Activation of Mitochondrial-Associated Apoptosis Contributes to Cryopreservation Failure. Cell Preservation Technology, 2007, 5, 155-164.	0.8	14
26	Assessment of Cryosurgical Device Performance Using a 3D Tissue-Engineered Cancer Model. Technology in Cancer Research and Treatment, 2017, 16, 900-909.	0.8	14
27	Enhanced Hypothermic Storage of Neonatal Cardiomyocytes. Cell Preservation Technology, 2005, 3, 61-74.	0.8	11
28	An In Vitro Investigation into Cryoablation and Adjunctive Cryoablation/Chemotherapy Combination Therapy for the Treatment of Pancreatic Cancer Using the PANC-1 Cell Line. Biomedicines, 2022, 10, 450.	1.4	11
29	<i>In Vitro</i> Assessment of Apoptosis and Necrosis Following Cold Storage in a Human Airway Cell Model. Biopreservation and Biobanking, 2009, 7, 19-27.	0.5	9
30	Assessment of a novel cryoablation device for the endovascular treatment of cardiac tachyarrhythmias. SAGE Open Medicine, 2018, 6, 205031211876979.	0.7	9
31	Dose Escalation of Vitamin D3 Yields Similar Cryosurgical Outcome to Single Dose Exposure in a Prostate Cancer Model. Cancer Control, 2018, 25, 107327481875741.	0.7	8
32	Breast Cancer Cryoablation: Assessment of the Impact of Fundamental Procedural Variables in an In Vitro Human Breast Cancer Model. Breast Cancer: Basic and Clinical Research, 2020, 14, 117822342097236.	0.6	7
33	Cardiomyocyte Responses to Thermal Excursions: Implications for Electrophysiological Cardiac Mapping. Cell Preservation Technology, 2007, 5, 116-128.	0.8	4
34	Implications of Differential Stress Response Activation Following Non-Frozen Hepatocellular Storage. Biopreservation and Biobanking, 2013, 11, 33-44.	0.5	4
35	Dual thermal ablation of pancreatic cancer cells as an improved combinatorial treatment strategy. Liver and Pancreatic Sciences, 2017, 2,	0.1	4
36	Investigation of Bladder Cancer Cell Response to Cryoablation and Adjunctive Cisplatin Based Cryo/Chemotherapy. Clinical Research Open Access, 2020, 6, .	0.0	4

John m Baust

#	Article	IF	CITATIONS
37	Evaluation of a Novel Cystoscopic Compatible Cryocatheter for the TreatmentÂof Bladder Cancer. Bladder Cancer, 2020, 6, 303-318.	0.2	4
38	Mechanisms of Cryoablation. , 2011, , 13-21.		3
39	Investigation of the Impact of Cell Cycle Stage on Freeze Response Sensitivity of Androgen-Insensitive Prostate Cancer. Technology in Cancer Research and Treatment, 2016, 15, 609-617.	0.8	2
40	Development and Assessment of a Novel Device for the Controlled, Dry Thawing of Cryopreserved Cell Products. BioProcessing: Advances and Trends in Biological Product Development, 2016, 15, 30-41.	0.1	2