FlÃ;via Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/759668/publications.pdf Version: 2024-02-01

FLÃ:VIA SOUSA

#	Article	IF	CITATIONS
1	Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Advanced Healthcare Materials, 2018, 7, 1701035.	3.9	173
2	A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles. Scientific Reports, 2017, 7, 3736.	1.6	92
3	Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Advanced Drug Delivery Reviews, 2020, 167, 89-108.	6.6	91
4	The solid progress of nanomedicine. Drug Delivery and Translational Research, 2020, 10, 726-729.	3.0	91
5	Stability Study Perspective of the Effect of Freeze-Drying Using Cryoprotectants on the Structure of Insulin Loaded into PLGA Nanoparticles. Biomacromolecules, 2014, 15, 3753-3765.	2.6	89
6	Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opinion on Drug Delivery, 2019, 16, 271-285.	2.4	83
7	Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. Journal of Controlled Release, 2019, 309, 37-47.	4.8	74
8	Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy?. Expert Opinion on Drug Delivery, 2017, 14, 1163-1176.	2.4	59
9	Oral films as breakthrough tools for oral delivery of proteins/peptides. Journal of Controlled Release, 2015, 211, 63-73.	4.8	51
10	In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair. Journal of Controlled Release, 2020, 322, 375-389.	4.8	42
11	Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6. Acta Biomaterialia, 2018, 81, 208-218.	4.1	39
12	Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opinion on Drug Delivery, 2018, 15, 213-222.	2.4	35
13	Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules. Carbohydrate Polymers, 2018, 194, 411-421.	5.1	32
14	Nanoparticles provide long-term stability of bevacizumab preserving its antiangiogenic activity. Acta Biomaterialia, 2018, 78, 285-295.	4.1	32
15	How to overcome the limitations of current insulin administration with new non-invasive delivery systems. Therapeutic Delivery, 2015, 6, 83-94.	1.2	28
16	Carcinoembryonic antigen-targeted nanoparticles potentiate the delivery of anticancer drugs to colorectal cancer cells. International Journal of Pharmaceutics, 2018, 549, 397-403.	2.6	26
17	Chitosan-based nanomedicine for brain delivery: Where are we heading?. Reactive and Functional Polymers, 2020, 146, 104430.	2.0	25
18	Effective intracellular delivery of bevacizumab <i>via</i> PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomaterials Science, 2020, 8, 3720-3729.	2.6	24

FLÃivia Sousa

#	Article	IF	CITATIONS
19	Biophysical study of bevacizumab structure and bioactivity under thermal and pH-stresses. European Journal of Pharmaceutical Sciences, 2017, 105, 127-136.	1.9	23
20	Recent advance of erythrocyte-mimicking nanovehicles: From bench to bedside. Journal of Controlled Release, 2019, 314, 81-91.	4.8	22
21	Development and validation of a rapid reversed-phase HPLC method for the quantification of monoclonal antibody bevacizumab from polyester-based nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2017, 142, 171-177.	1.4	20
22	In vitro model for predicting the access and distribution of drugs in the brain using hCMEC/D3 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 120-126.	2.0	19
23	Alginate-Based Delivery Systems for Bevacizumab Local Therapy: InÂVitro Structural Features and Release Properties. Journal of Pharmaceutical Sciences, 2019, 108, 1559-1568.	1.6	18
24	Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. International Journal of Pharmaceutics, 2020, 585, 119516.	2.6	17
25	Therapeutic Monoclonal Antibodies Delivery for the Glioblastoma Treatment. Advances in Protein Chemistry and Structural Biology, 2018, 112, 61-80.	1.0	15
26	Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies. Methods in Molecular Biology, 2018, 1674, 239-253.	0.4	13
27	Intratumoral VEGF nanotrapper reduces gliobastoma vascularization and tumor cell mass. Journal of Controlled Release, 2021, 339, 381-390.	4.8	12
28	Cell-based in vitro models forÂnasal permeability studies. , 2016, , 83-100.		7
29	Biophysical, photochemical and biochemical characterization of a protease from Aspergillus tamarii URM4634. International Journal of Biological Macromolecules, 2018, 118, 1655-1666.	3.6	5
30	Polyester-Based Nanoparticles for Delivery of Therapeutic Proteins. Methods in Molecular Biology, 2018, 1674, 255-274.	0.4	4
31	Theranostic Biomaterials for Regulation of the Blood–Brain Barrier. , 2019, , 303-319.		4
32	Implantable and long-lasting drug delivery systems for cancer treatment. , 2022, , 129-162.		2
33	Structural and functional analysis of broad pH and thermal stable protease from Penicillium	1.0	0