Juwon Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7595670/publications.pdf

Version: 2024-02-01

257450 315739 1,669 69 24 38 citations h-index g-index papers 74 74 74 1600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ligandâ€toâ€metal charge transfer driven by excitedâ€state antiaromaticity in metallohexaphyrins. Bulletin of the Korean Chemical Society, 2022, 43, 508-513.	1.9	5
2	Porphyrinoids, a unique platform for exploring excited-state aromaticity. Chemical Society Reviews, 2022, 51, 268-292.	38.1	32
3	Modulations of a Metal–Ligand Interaction and Photophysical Behaviors by HÃ⅓ckel–Möbius Aromatic Switching. Journal of the American Chemical Society, 2022, 144, 582-589.	13.7	10
4	Impact of Cyclic Strain on the Structural Relaxation Dynamics of Macrocyclic Thiophenes. Journal of Physical Chemistry C, 2021, 125, 1947-1953.	3.1	2
5	Modeling Electronâ€Transfer Degradation of Organic Lightâ€Emitting Devices. Advanced Materials, 2021, 33, e2003832.	21.0	21
6	Magneticâ€Fieldâ€Induced Modulation of Chargeâ€Recombination Dynamics in a Rosarinâ€Fullerene Complex. Angewandte Chemie - International Edition, 2021, 60, 9379-9383.	13.8	6
7	Organic Lightâ€Emitting Diodes: Modeling Electronâ€Transfer Degradation of Organic Lightâ€Emitting Devices (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170090.	21.0	1
8	Femtosecond Transient Absorption Studies of Polymer Aggregation on Photovoltaic Performance: Role of an Integrated Aggregation Promotor in the Polymer Chain. Journal of Physical Chemistry C, 2021, 125, 7568-7580.	3.1	3
9	Table-top extreme ultraviolet second harmonic generation. Science Advances, 2021, 7, .	10.3	26
10	<i>meso</i> -Oxoisocorroles: Tunable Antiaromaticity by Metalation and Coordination of Lewis Acids as Well as Aromaticity Reversal in the Triplet Excited State. Journal of the American Chemical Society, 2021, 143, 7958-7967.	13.7	21
11	Influence of Intramolecular Charge-Transfer Characteristics of Excitons on Polaron Generation at the Donor/Acceptor Interface in Polymer Solar Cells. Journal of Physical Chemistry C, 2021, 125, 18352-18361.	3.1	11
12	Coupled valence carrier and core-exciton dynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">WS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> probed by few-femtosecond extreme ultraviolet transient absorption spectroscopy. Physical Review B, 2021, 104, .	3.2	13
13	Siteâ€Selective Nâ€Methylation of 5,15â€Diazaporphyrins: Reactive Cationic Porphyrinoids that Provide Isoporphyrin Analogues. Chemistry - A European Journal, 2020, 26, 2754-2760.	3.3	6
14	Spectroscopic Studies on Intramolecular Charge-Transfer Characteristics in Small-Molecule Organic Solar Cell Donors: A Case Study on ADA and DAD Triad Donors. Journal of Physical Chemistry C, 2020, 124, 18502-18512.	3.1	24
15	Innenrù⁄4cktitelbild: Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solidâ€6tate Miniatures (Angew. Chem. 47/2020). Angewandte Chemie, 2020, 132, 21431-21431.	2.0	0
16	A boronic acid-functionalized phthalocyanine with an aggregation-enhanced photodynamic effect for combating antibiotic-resistant bacteria. Chemical Science, 2020, 11, 5735-5739.	7.4	75
17	Noncovalent Intermolecular Interaction in Cofacially Stacked 24Ï€ Antiaromatic Hexaphyrin Dimer. Chemistry - A European Journal, 2020, 26, 16434-16440.	3.3	8
18	Evolution from unimolecular to colloidal-quantum-dot-like character in chlorine or zinc incorporated InP magic size clusters. Nature Communications, 2020, 11, 3127.	12.8	34

#	Article	IF	CITATIONS
19	Charge Recombination in Polaron Pairs: A Key Factor for Operational Stability of Blueâ€Phosphorescent Lightâ€Emitting Devices. Advanced Theory and Simulations, 2020, 3, 2000028.	2.8	6
20	Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solid tate Miniatures. Angewandte Chemie, 2020, 132, 21142-21150.	2.0	2
21	Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solid tate Miniatures. Angewandte Chemie - International Edition, 2020, 59, 20956-20964.	13.8	30
22	Excitedâ€State Aromaticity of Gold(III) Hexaphyrins and Metalation Effect Investigated by Timeâ€Resolved Electronic and Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 5129-5134.	13.8	12
23	Excitedâ€State Aromaticity of Gold(III) Hexaphyrins and Metalation Effect Investigated by Timeâ€Resolved Electronic and Vibrational Spectroscopy. Angewandte Chemie, 2020, 132, 5167-5172.	2.0	0
24	Three-dimensional aromaticity in an antiaromatic cyclophane. Nature Communications, 2019, 10, 3576.	12.8	73
25	Two-electron transfer stabilized by excited-state aromatization. Nature Communications, 2019, 10, 4983.	12.8	21
26	Changes in macrocyclic aromaticity and formation of a charge-separated state by complexation of expanded porphyrin and C60. Chemical Communications, 2019, 55, 8301-8304.	4.1	15
27	The effects of discrete and gradient mid-shell structures on the photoluminescence of single InP quantum dots. Nanoscale, 2019, 11, 23251-23258.	5.6	28
28	Synthesis of Ag/Mn Co-Doped CdS/ZnS (Core/Shell) Nanocrystals with Controlled Dopant Concentration and Spatial Distribution and the Dynamics of Excitons and Energy Transfer between Co-Dopants. Nano Letters, 2019, 19, 308-317.	9.1	16
29	Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal. Accounts of Chemical Research, 2018, 51, 1349-1358.	15.6	85
30	Photoinduced Intermolecular Electron Transfer Mediated by the Colloidal Tyrosyl Bolaamphiphile Assembly. ChemPhysChem, 2018, 19, 643-650.	2.1	4
31	The Extension of Baird's Rule to Twisted Heteroannulenes: Aromaticity Reversal of Singly and Doubly Twisted Molecular Systems in the Lowest Triplet State. Angewandte Chemie - International Edition, 2017, 56, 2932-2936.	13.8	23
32	meso-Arylethynyl subporphyrins as efficient and tunable photo-induced electron transfer units. Journal of Porphyrins and Phthalocyanines, 2017, 21, 152-157.	0.8	6
33	The Extension of Baird's Rule to Twisted Heteroannulenes: Aromaticity Reversal of Singly and Doubly Twisted Molecular Systems in the Lowest Triplet State. Angewandte Chemie, 2017, 129, 2978-2982.	2.0	5
34	Control and Switching of Aromaticity in Various All-Aza-Expanded Porphyrins: Spectroscopic and Theoretical Analyses. Chemical Reviews, 2017, 117, 2257-2312.	47.7	155
35	Protonation Dependent Topological Dichotomy of Core Modified Hexaphyrins: Synthesis, Characterization, and Excited State Dynamics. Journal of Organic Chemistry, 2017, 82, 556-566.	3.2	10
36	Guest-Induced Modulation of the Energy Transfer Process in Porphyrin-Based Artificial Light Harvesting Dendrimers. Journal of the American Chemical Society, 2017, 139, 993-1002.	13.7	37

#	Article	IF	Citations
37	Unraveling Excited-Singlet-State Aromaticity via Vibrational Analysis. CheM, 2017, 3, 870-880.	11.7	35
38	Highly planar diarylamine-fused porphyrins and their remarkably stable radical cations. Chemical Science, 2017, 8, 189-199.	7.4	64
39	Spontaneous Formation of an Airâ€Stable Radical upon the Direct Fusion of Diphenylmethane to a Triarylporphyrin. Angewandte Chemie, 2016, 128, 8853-8856.	2.0	36
40	Spontaneous Formation of an Airâ€Stable Radical upon the Direct Fusion of Diphenylmethane to a Triarylporphyrin. Angewandte Chemie - International Edition, 2016, 55, 8711-8714.	13.8	53
41	A Directly Fused Subporphyrin Dimer with a Wavelike Structure. Angewandte Chemie - International Edition, 2016, 55, 9212-9215.	13.8	17
42	Synthesis of Di <i>â€peri</i> âfinaphthoporphyrins by PtCl ₂ âfMediated Cyclization of Quinodimethaneâfype Porphyrins. Angewandte Chemie, 2016, 128, 6413-6417.	2.0	8
43	A Directly Fused Subporphyrin Dimer with a Wavelike Structure. Angewandte Chemie, 2016, 128, 9358-9361.	2.0	13
44	Frontispiece: Aromatic Fused [30] Heteroannulenes with NIR Absorption and NIR Emission: Synthesis, Characterization, and Excited-State Dynamics. Chemistry - A European Journal, 2016, 22, .	3.3	0
45	Conformational Fixation of a Rectangular Antiaromatic [28]Hexaphyrin Using Rationally Installed Peripheral Straps. Chemistry - A European Journal, 2016, 22, 4413-4417.	3.3	21
46	The first porphyrin–subphthalocyaninatoboron(<scp>iii</scp>)-fused hybrid with unique conformation and intramolecular charge transfer behavior. Chemical Communications, 2016, 52, 10517-10520.	4.1	7
47	Exciton coupling dynamics in syn- and anti-type β–β linked Zn(<scp>ii</scp>) porphyrin linear arrays. Physical Chemistry Chemical Physics, 2016, 18, 23105-23110.	2.8	10
48	A Description of Vibrational Modes in Hexaphyrins: Understanding the Aromaticity Reversal in the Lowest Triplet State. Angewandte Chemie - International Edition, 2016, 55, 11930-11934.	13.8	32
49	Innentitelbild: A Description of Vibrational Modes in Hexaphyrins: Understanding the Aromaticity Reversal in the Lowest Triplet State (Angew. Chem. 39/2016). Angewandte Chemie, 2016, 128, 11864-11864.	2.0	0
50	A Description of Vibrational Modes in Hexaphyrins: Understanding the Aromaticity Reversal in the Lowest Triplet State. Angewandte Chemie, 2016, 128, 12109-12113.	2.0	14
51	Directly Diphenylboraneâ€Fused Porphyrins. Angewandte Chemie, 2016, 128, 3248-3251.	2.0	13
52	Directly Diphenylboraneâ€Fused Porphyrins. Angewandte Chemie - International Edition, 2016, 55, 3196-3199.	13.8	51
53	Synthesis of Di <i>â€peri</i> âisâ€dinaphthoporphyrins by PtCl ₂ â€Mediated Cyclization of Quinodimethaneâ€type Porphyrins. Angewandte Chemie - International Edition, 2016, 55, 6305-6309.	13.8	20
54	Induced Correspondence of a Local Ï€â€Aromatic Sextet in Heteroannulenes: Synthesis and Characterization. Chemistry - A European Journal, 2016, 22, 5504-5508.	3.3	6

#	Article	IF	CITATIONS
55	Aromatic Fused [30] Heteroannulenes with NIR Absorption and NIR Emission: Synthesis, Characterization, and Excitedâ€State Dynamics. Chemistry - A European Journal, 2016, 22, 8026-8031.	3.3	11
56	Aromaticity Reversal in the Lowest Excited Triplet State of Archetypical Möbius Heteroannulenic Systems. Angewandte Chemie, 2016, 128, 6597-6601.	2.0	9
57	Rýcktitelbild: Aromaticity Reversal in the Lowest Excited Triplet State of Archetypical Möbius Heteroannulenic Systems (Angew. Chem. 22/2016). Angewandte Chemie, 2016, 128, 6672-6672.	2.0	0
58	Aromaticity Reversal in the Lowest Excited Triplet State of Archetypical MÃ \P bius Heteroannulenic Systems. Angewandte Chemie - International Edition, 2016, 55, 6487-6491.	13.8	31
59	Heteroleptic Tetrapyrroleâ€Fused Dimeric and Trimeric Skeletons with Unusual Nonâ€Frustrated Fluorescence. Chemistry - A European Journal, 2016, 22, 4492-4499.	3.3	12
60	Switchable π-electronic network of bis(α-oligothienyl)-substituted hexaphyrins between helical versus rectangular circuit. Chemical Science, 2016, 7, 2239-2245.	7.4	16
61	Intramolecular electron transfer reactions in meso-(4-nitrophenyl)-substituted subporphyrins. Chemical Communications, 2016, 52, 1424-1427.	4.1	7
62	mesoâ€Hydroxysubporphyrins: A Cyclic Trimeric Assembly and a Stable mesoâ€Oxy Radical. Angewandte Chemie - International Edition, 2015, 54, 6613-6617.	13.8	57
63	Modulation of Axial-Ligand Binding and Releasing Processes onto the Triazole-Bearing Nickel(II) Picket-Fence Porphyrins: Steric Repulsion versus Hydrogen-Bonding Effects. Journal of Physical Chemistry B, 2015, 119, 7053-7061.	2.6	15
64	βâ€Functionalized Push–Pull Porphyrin Sensitizers in Dyeâ€Sensitized Solar Cells: Effect of Ï€â€Conjugated Spacers. ChemSusChem, 2015, 8, 2967-2977.	6.8	34
65	5,20-Di(pyridin-2-yl)-[28]hexaphyrin(1.1.1.1.1): A Stable Hýckel Antiaromatic Hexaphyrin Stabilized by Intramolecular Hydrogen Bonding and Protonation-Induced Conformational Twist To Gain Möbius Aromaticity. Journal of Organic Chemistry, 2015, 80, 11726-11733.	3.2	36
66	Switching between Aromatic and Antiaromatic 1,3-Phenylene-Strapped [26]- and [28]Hexaphyrins upon Passage to the Singlet Excited State. Journal of the American Chemical Society, 2015, 137, 11856-11859.	13.7	53
67	Triarylporphyrin <i>meso</i> -Oxy Radicals: Remarkable Chemical Stabilities and Oxidation to Oxophlorin i€-Cations. Journal of the American Chemical Society, 2015, 137, 15584-15594.	13.7	67
68	Unique ultrafast energy transfer in a series of phenylene-bridged subporphyrin–porphyrin hybrids. Chemical Communications, 2014, 50, 10424-10426.	4.1	14
69	Dark to light! A new strategy for large Stokes shift dyes: coupling of a dark donor with tunable high quantum yield acceptors. Chemical Science, 2014, 5, 4812-4818.	7.4	46