Ali Miserez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7595207/publications.pdf

Version: 2024-02-01

66234 76769 6,068 112 42 74 citations h-index g-index papers 122 122 122 6630 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer. Science, 2012, 336, 1275-1280.	6.0	648
2	Preventing mussel adhesion using lubricant-infused materials. Science, 2017, 357, 668-673.	6.0	375
3	The Transition from Stiff to Compliant Materials in Squid Beaks. Science, 2008, 319, 1816-1819.	6.0	362
4	Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Nature Biotechnology, 2013, 31, 908-915.	9.4	171
5	Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Materials Today, 2010, 13, 42-52.	8.3	166
6	An Underwater Surfaceâ€Drying Peptide Inspired by a Mussel Adhesive Protein. Advanced Functional Materials, 2016, 26, 3496-3507.	7.8	163
7	Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nature Chemical Biology, 2015, 11, 488-495.	3.9	148
8	Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nature Communications, 2015, 6, 8737.	5.8	144
9	White Light-Emitting Multistimuli-Responsive Hydrogels with Lanthanides and Carbon Dots. ACS Applied Materials & Dots. ACS Applied Materials & Dots. ACS	4.0	133
10	Effects of Laminate Architecture on Fracture Resistance of Sponge Biosilica: Lessons from Nature. Advanced Functional Materials, 2008, 18, 1241-1248.	7.8	132
11	The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nature Materials, 2015, 14, 943-950.	13.3	128
12	Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nature Chemistry, 2022, 14, 274-283.	6.6	117
13	Jumbo squid beaks: Inspiration for design of robust organic composites. Acta Biomaterialia, 2007, 3, 139-149.	4.1	110
14	A Doubleâ€Layer Mechanochromic Hydrogel with Multidirectional Force Sensing and Encryption Capability. Advanced Functional Materials, 2019, 29, 1808191.	7.8	109
15	Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides. Nature Communications, 2019, 10, 5465.	5.8	105
16	Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nature Communications, 2014, 5, 3187.	5.8	103
17	Microstructural and Biochemical Characterization of the Nanoporous Sucker Rings from <i>Dosidicus gigas</i> . Advanced Materials, 2009, 21, 401-406.	11.1	91
18	Property maps for abrasion resistance of materials. Acta Materialia, 2007, 55, 6365-6371.	3.8	89

#	Article	IF	CITATIONS
19	Nanoconfined \hat{l}^2 -Sheets Mechanically Reinforce the Supra-Biomolecular Network of Robust Squid Sucker Ring Teeth. ACS Nano, 2014, 8, 7170-7179.	7.3	88
20	Cross-linking Chemistry of Squid Beak. Journal of Biological Chemistry, 2010, 285, 38115-38124.	1.6	86
21	Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. Nature Materials, 2009, 8, 910-916.	13.3	82
22	Wear and abrasion resistance selection maps of biological materials. Acta Biomaterialia, 2013, 9, 7895-7907.	4.1	80
23	Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chemical Communications, 2016, 52, 697-700.	2.2	79
24	Thermalâ€Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy. Advanced Materials, 2020, 32, e1907030.	11.1	75
25	Catechol-Functionalized Chitosan/Iron Oxide Nanoparticle Composite Inspired by Mussel Thread Coating and Squid Beak Interfacial Chemistry. Langmuir, 2013, 29, 10899-10906.	1.6	69
26	Time-Resolved Observations of Liquid–Liquid Phase Separation at the Nanoscale Using ⟨i⟩in Situ⟨/i⟩ Liquid Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 7202-7210.	6.6	69
27	From Soft Selfâ€Healing Gels to Stiff Films in Suckerinâ€Based Materials Through Modulation of Crosslink Density and <i>β</i> à€6heet Content. Advanced Materials, 2015, 27, 3953-3961.	11.1	68
28	Bioâ€Inspired Mechanotactic Hybrids for Orchestrating Tractionâ€Mediated Epithelial Migration. Advanced Materials, 2016, 28, 3102-3110.	11.1	66
29	Size effects and shape memory properties in ZrO2 ceramic micro- and nano-pillars. Scripta Materialia, 2015, 101, 40-43.	2.6	64
30	The Mantis Shrimp Saddle: A Biological Spring Combining Stiffness and Flexibility. Advanced Functional Materials, 2015, 25, 6437-6447.	7.8	61
31	Green biolubricant infused slippery surfaces to combat marine biofouling. Journal of Colloid and Interface Science, 2020, 568, 185-197.	5.0	59
32	Glucose-Responsive Peptide Coacervates with High Encapsulation Efficiency for Controlled Release of Insulin. Bioconjugate Chemistry, 2018, 29, 2176-2180.	1.8	57
33	Phase transition-induced elasticity of \hat{l} ±-helical bioelastomeric fibres and networks. Chemical Society Reviews, 2013, 42, 1973-1995.	18.7	56
34	Mineral minimization in nature's alternative teeth. Journal of the Royal Society Interface, 2007, 4, 19-31.	1.5	55
35	Multi-scale thermal stability of a hard thermoplastic protein-based material. Nature Communications, 2015, 6, 8313.	5.8	54
36	Squid Sucker Ring Teeth: Multiscale Structure–Property Relationships, Sequencing, and Protein Engineering of a Thermoplastic Biopolymer. ACS Biomaterials Science and Engineering, 2017, 3, 680-693.	2.6	53

#	Article	IF	Citations
37	Diverse Strategies of Protein Sclerotization in Marine Invertebrates. Advances in Insect Physiology, 2010, 38, 75-133.	1.1	52
38	Supramolecular \hat{l}^2 -Sheets Stabilized Protein Nanocarriers for Drug Delivery and Gene Transfection. ACS Nano, 2017, 11, 4528-4541.	7.3	52
39	Self-coacervation of modular squid beak proteins – a comparative study. Soft Matter, 2017, 13, 7740-7752.	1.2	52
40	Biomimetic Production of Silk-Like Recombinant Squid Sucker Ring Teeth Proteins. Biomacromolecules, 2014, 15, 3278-3289.	2.6	49
41	Biological materials and molecular biomimetics – filling up the empty soft materials space for tissue engineering applications. Journal of Materials Chemistry B, 2015, 3, 13-24.	2.9	49
42	Particle reinforced metals of high ceramic content. Materials Science & Dispersion A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 822-831.	2.6	45
43	Complex coacervates of oppositely charged co-polypeptides inspired by the sandcastle worm glue. Journal of Materials Chemistry B, 2016, 4, 1544-1556.	2.9	42
44	Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer. Acta Biomaterialia, 2020, 110, 221-230.	4.1	42
45	Structural, Nanomechanical, and Computational Characterization of <scp>d</scp> , <scp>l</scp> -Cyclic Peptide Assemblies. ACS Nano, 2015, 9, 3360-3368.	7.3	39
46	Supramolecular β‧heet Suckerin–Based Underwater Adhesives. Advanced Functional Materials, 2020, 30, 1907534.	7.8	39
47	Fracture of aluminium reinforced with densely packed ceramic particles: link between the local and the total work of fracture. Acta Materialia, 2004, 52, 1337-1351.	3.8	38
48	Pressure Sensitive Adhesion of an Elastomeric Protein Complex Extracted From Squid Ring Teeth. Advanced Functional Materials, 2014, 24, 6227-6233.	7.8	38
49	Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals. ACS Nano, 2017, 11, 11856-11865.	7.3	37
50	Fracture of aluminium reinforced with densely packed ceramic particles: influence of matrix hardening. Acta Materialia, 2004, 52, 5331-5345.	3.8	36
51	Unifying Design Strategies in Demosponge and Hexactinellid Skeletal Systems. Journal of Adhesion, 2010, 86, 72-95.	1.8	36
52	A Short Peptide Hydrogel with High Stiffness Induced by 3 ₁₀ â€Helices to βâ€Sheet Transition in Water. Advanced Science, 2019, 6, 1901173.	5.6	36
53	Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of Helicobacter pylori infection. Nanoscale, 2016, 8, 16486-16498.	2.8	33
54	A diecast mineralization process forms the tough mantis shrimp dactyl club. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8685-8692.	3.3	33

#	Article	IF	Citations
55	Orientational Coupling Locally Orchestrates a Cell Migration Pattern for Reâ€Epithelialization. Advanced Materials, 2017, 29, 1700145.	11.1	33
56	Liquid–Liquid Phase Separation of the Green Mussel Adhesive Protein Pvfpâ€5 is Regulated by the Postâ€Translated Dopa Amino Acid. Advanced Materials, 2022, 34, e2103828.	11.1	32
57	Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites. Engineering Fracture Mechanics, 2004, 71, 2385-2406.	2.0	31
58	Biomechanical Design of the Mantis Shrimp Saddle: A Biomineralized Spring Used for Rapid Raptorial Strikes. IScience, 2018, 8, 271-282.	1.9	31
59	Squid suckerin microneedle arrays for tunable drug release. Journal of Materials Chemistry B, 2017, 5, 8467-8478.	2.9	30
60	Self-Assembly of Recombinant Hagfish Thread Keratins Amenable to a Strain-Induced \hat{l}_{\pm} -Helix to \hat{l}^{2} -Sheet Transition. Biomacromolecules, 2015, 16, 2327-2339.	2.6	29
61	Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-Î ² supramolecular networks. Acta Biomaterialia, 2016, 46, 41-54.	4.1	29
62	Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic \hat{l}^2 -Sheet-Rich Amyloidogenic Peptide. ACS Nano, 2018, 12, 9152-9161.	7.3	28
63	Fabrication of a 3D hair follicleâ€like hydrogel by soft lithography. Journal of Biomedical Materials Research - Part A, 2013, 101, 3159-3169.	2.1	27
64	Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 2017, 9, 12908-12915.	2.8	24
65	Adhesive Properties of Adsorbed Layers of Two Recombinant Mussel Foot Proteins with Different Levels of DOPA and Tyrosine. Langmuir, 2019, 35, 15481-15490.	1.6	23
66	Three-dimensional structure of <i>Megabalanus rosa</i> Cement Protein 20 revealed by multi-dimensional NMR and molecular dynamics simulations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190198.	1.8	22
67	Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization. Advanced Materials, 2021, 33, e2102658.	11.1	22
68	Squid Suckerin Biomimetic Peptides Form Amyloid-like Crystals with Robust Mechanical Properties. Biomacromolecules, 2017, 18, 4240-4248.	2.6	21
69	Liquid–Liquid Phase Separation of Short Histidine- and Tyrosine-Rich Peptides: Sequence Specificity and Molecular Topology. Journal of Physical Chemistry B, 2021, 125, 6776-6790.	1.2	21
70	Liquid–liquid phase separation of proteins and peptides derived from biological materials: Discovery, protein engineering, and emerging applications. MRS Bulletin, 2020, 45, 1039-1047.	1.7	21
71	Four-Stranded Coiled-Coil Elastic Protein in the Byssus of the Giant Clam, Tridacna maxima. Biomacromolecules, 2012, 13, 332-341.	2.6	20
72	Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics. Acta Biomaterialia, 2021, 136, 111-123.	4.1	20

#	Article	IF	CITATIONS
73	Influence of heat treatment and particle shape on mechanical properties of infiltrated Al2O3particle reinforced Al-2 wt-%Cu. Materials Science and Technology, 2002, 18, 1461-1470.	0.8	19
74	Layer-by-Layer Polyelectrolyte Deposition: A Mechanism for Forming Biocomposite Materials. Biomacromolecules, 2013, 14, 1715-1726.	2.6	18
75	Structural Proteins from Whelk Egg Capsule with Long Range Elasticity Associated with a Solid-State Phase Transition. Biomacromolecules, 2014, 15, 30-42.	2.6	17
76	Increasing the Strength/Toughness Combination of High Volume Fraction Particulate Metal Matrix Composites using an Al-Ag Matrix Alloy. Advanced Engineering Materials, 2006, 8, 56-62.	1.6	16
77	The role of water on the structure and mechanical properties of a thermoplastic natural block co-polymer from squid sucker ring teeth. Bioinspiration and Biomimetics, 2016, 11, 055003.	1.5	16
78	Multi-scale structural design and biomechanics of the pistol shrimp snapper claw. Acta Biomaterialia, 2018, 73, 449-457.	4.1	15
79	Disorder–Order Interplay of a Barnacle Cement Protein Triggered by Interactions with Calcium and Carbonate Ions: A Molecular Dynamics Study. Chemistry of Materials, 2020, 32, 8845-8859.	3.2	15
80	Supramolecular propensity of suckerin proteins is driven by \hat{l}^2 -sheets and aromatic interactions as revealed by solution NMR. Biomaterials Science, 2018, 6, 2440-2447.	2.6	14
81	Laboratory and Field Testing Assessment of Next Generation Biocide-Free, Fouling-Resistant Slippery Coatings. ACS Applied Polymer Materials, 2020, 2, 5147-5162.	2.0	14
82	Proteinâ€Based Encapsulation Strategies: Toward Micro―and Nanoscale Carriers with Increased Functionality. Small Science, 2022, 2, .	5.8	13
83	Robust and Long-Term Cellular Protein and Enzymatic Activity Preservation in Biomineralized Mammalian Cells. ACS Nano, 2022, 16, 2164-2175.	7.3	13
84	Stable Formation of Gold Nanoparticles onto Redoxâ€Active Solid Biosubstrates Made of Squid Suckerin Proteins. Macromolecular Rapid Communications, 2015, 36, 1877-1883.	2.0	12
85	Properties and architecture of the sperm whale skull amphitheatre. Zoology, 2016, 119, 42-51.	0.6	12
86	Catechol-modified green fluorescent protein as a specific biosensor for Al ions. Sensors and Actuators B: Chemical, 2017, 251, 326-333.	4.0	12
87	Biomimetic self-assembly of recombinant marine snail egg capsule proteins into structural coiled-coil units. Journal of Materials Chemistry B, 2015, 3, 2671-2684.	2.9	11
88	l-Lysine templated CaCO3 precipitated to flax develops flowery crystal structures that improve the mechanical properties of natural fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 2015, 75, 84-88.	3.8	11
89	Fracture toughness of the stomatopod dactyl club is enhanced by plastic dissipation: A fracture micromechanics study. Acta Biomaterialia, 2021, 126, 339-349.	4.1	10
90	Nanocapsules Produced by Nanoprecipitation of Designed Suckerin-Silk Fusion Proteins. ACS Macro Letters, 2021, 10, 628-634.	2.3	10

#	Article	IF	CITATIONS
91	In vivo liquid–liquid phase separation protects amyloidogenic and aggregationâ€prone peptides during overexpression in <scp><i>Escherichia coli</i></scp> . Protein Science, 2022, 31, e4292.	3.1	10
92	Accelerated corrosion of marine-grade steel by a redox-active, cysteine-rich barnacle cement protein. Npj Materials Degradation, 2020, 4, .	2.6	9
93	Self-Assembly of a Barnacle Cement Protein (MrCP20) into Adhesive Nanofibrils with Concomitant Regulation of CaCO ₃ Polymorphism. Chemistry of Materials, 2021, 33, 9715-9724.	3.2	9
94	Complete Sequences of the Velvet Worm Slime Proteins Reveal that Slime Formation is Enabled by Disulfide Bonds and Intrinsically Disordered Regions. Advanced Science, 2022, 9, e2201444.	5.6	9
95	Synthesis of biomimetic co-polypeptides with tunable degrees of phosphorylation. Polymer Chemistry, 2014, 5, 1351-1361.	1.9	8
96	Integrative and comparative analysis of coiled-coil based marine snail egg cases – a model for biomimetic elastomers. Biomaterials Science, 2014, 2, 710.	2.6	7
97	Interplay between Interfacial Energy, Contact Mechanics, and Capillary Forces in EGaIn Droplets. ACS Applied Materials & Droplets. ACS Applied Materials & Droplets. ACS	4.0	6
98	Environmental impact on the mechanical properties of Porites spp. corals. Coral Reefs, 2021, 40, 701-717.	0.9	5
99	Integrating Materials and Life Sciences Toward the Engineering of Biomimetic Materials. Jom, 2012, 64, 494-504.	0.9	4
100	Hierarchical Assembly of Tough Bioelastomeric Egg Capsules is Mediated by a Bundling Protein. Biomacromolecules, 2017, 18, 931-942.	2.6	4
101	Minimal Reconstitution of Membranous Web Induced by a Vesicle–Peptide Sol–Gel Transition. Biomacromolecules, 2019, 20, 1709-1718.	2.6	4
102	Structure of a consensus chitin-binding domain revealed by solution NMR. Journal of Structural Biology, 2021, 213, 107725.	1.3	4
103	Structural Metallic Materials by Infiltration. , 2004, , 379-390.		4
104	Fast and Green Synthesis of an Oligo-Hydrocaffeic Acid-Based Adhesive. ACS Omega, 2018, 3, 18911-18916.	1.6	3
105	Inside Front Cover: Effects of Laminate Architecture on Fracture Resistance of Sponge Biosilica: Lessons from Nature (Adv. Funct. Mater. 8/2008). Advanced Functional Materials, 2008, 18, 1146-1146.	7.8	2
106	Squid's Suckerin Proteins in Bits & Bytes. Biophysical Journal, 2016, 110, 341a.	0.2	2
107	Sucker Rings from the Humboldt Squid Dosidicus gigas: The Role of Nanotubule Architecture on the Mechanical Properties. Materials Research Society Symposia Proceedings, 2009, 1187, 1.	0.1	0
108	50 Years of Biomaterials Research in Singapore. , 2016, , 157-177.		O

#	Article	IF	CITATIONS
109	Squid sucker teeth proteins: From basic discovery to multi-functional materials of a thermoplastic biopolymer. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0
110	Fracture Toughness of the Stomatopod Dactyl Club is Enhanced by Plastic Dissipation: A Fracture Micromechanics Study. SSRN Electronic Journal, 0 , , .	0.4	0
111	Cephalopod-Mimetic Tunable Photonic Coatings Assembled from Quasi-Monodispersed Reflectin Protein Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21436-21452.	4.0	O
112	Nanolattice-Forming Hybrid Collagens in Protective Shark Egg Cases. Biomacromolecules, 2022, 23, 2878-2890.	2.6	0