David FernÃ;ndez-Calviño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7595147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	108
2	Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biology and Biochemistry, 2010, 42, 2119-2127.	4.2	104
3	Copper accumulation and fractionation in vineyard soils from temperate humid zone (NW Iberian) Tj ETQq1 1 0.	784314 rgE 2.3	8T ₈ /Overlock
4	Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes, 2020, 8, 1479.	1.3	78
5	Copper distribution and acid-base mobilization in vineyard soils and sediments from Galicia (NW) Tj ETQq1 1 0.7	84314 rgB1 1.8	Г <u>/</u> gverlock
6	Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments. Journal of Environmental Management, 2014, 144, 258-264.	3.8	70
7	Copper content of soils and river sediments in a winegrowing area, and its distribution among soil or sediment components. Geoderma, 2008, 145, 91-97.	2.3	67
8	Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: Stirred flow chamber experiments. Chemosphere, 2015, 134, 361-366.	4.2	67
9	Microbial community structure of vineyard soils with different pH and copper content. Applied Soil Ecology, 2010, 46, 276-282.	2.1	66
10	Bacterial pH-optima for growth track soil pH, but are higher than expected at low pH. Soil Biology and Biochemistry, 2011, 43, 1569-1575.	4.2	59
11	Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark. Science of the Total Environment, 2018, 635, 1520-1529.	3.9	53
12	Degradation of sulfadiazine, sulfachloropyridazine and sulfamethazine in aqueous media. Journal of Environmental Management, 2018, 228, 239-248.	3.8	52
13	Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils. Environmental Science and Pollution Research, 2015, 22, 425-433.	2.7	50
14	Experimental data and model prediction of tetracycline adsorption and desorption in agricultural soils. Environmental Research, 2019, 177, 108607.	3.7	50
15	Competitive adsorption of tetracycline, oxytetracycline and chlortetracycline on soils with different pH value and organic matter content. Environmental Research, 2019, 178, 108669.	3.7	50
16	Interaction between pH and Cu toxicity on fungal and bacterial performance in soil. Soil Biology and Biochemistry, 2016, 96, 20-29.	4.2	48
17	Zinc distribution and acid–base mobilisation in vineyard soils and sediments. Science of the Total Environment, 2012, 414, 470-479.	3.9	47
18	Changes in copper content and distribution in young, old and abandoned vineyard acid soils due to land use changes. Land Degradation and Development, 2008, 19, 165-177.	1.8	45

#	Article	IF	CITATIONS
19	Single and simultaneous adsorption of three sulfonamides in agricultural soils: Effects of pH and organic matter content. Science of the Total Environment, 2020, 744, 140872.	3.9	45
20	Kinetics of Hg(II) adsorption and desorption in calcined mussel shells. Journal of Hazardous Materials, 2010, 180, 622-627.	6.5	44
21	Bacterial pollution induced community tolerance (PICT) to Cu and interactions with pH in long-term polluted vineyard soils. Soil Biology and Biochemistry, 2011, 43, 2324-2331.	4.2	42
22	Adsorption and desorption kinetics of carbofuran in acid soils. Journal of Hazardous Materials, 2011, 190, 159-167.	6.5	42
23	Zinc adsorption in acid soils. Geoderma, 2011, 162, 358-364.	2.3	40
24	The effect of phosphate on the sorption of copper by acid soils. Geoderma, 2009, 150, 166-170.	2.3	37
25	Influence of humified organic matter on copper behavior in acid polluted soils. Environmental Pollution, 2010, 158, 3634-3641.	3.7	37
26	Phosphorus effect on Zn adsorption–desorption kinetics in acid soils. Chemosphere, 2011, 83, 1028-1034.	4.2	35
27	Competitive and non-competitive cadmium, copper and lead sorption/desorption on wheat straw affecting sustainability in vineyards. Journal of Cleaner Production, 2016, 139, 1496-1503.	4.6	34
28	Adsorption/desorption and transport of sulfadiazine, sulfachloropyridazine, and sulfamethazine, in acid agricultural soils. Chemosphere, 2019, 234, 978-986.	4.2	34
29	SPATIAL DISTRIBUTION OF COPPER FRACTIONS IN A VINEYARD SOIL. Land Degradation and Development, 2013, 24, 556-563.	1.8	32
30	Perspectives on the use of by-products to treat soil and water pollution. Microporous and Mesoporous Materials, 2015, 210, 199-201.	2.2	32
31	Specific Adsorption of Heavy Metals in Soils: Individual and Competitive Experiments. Agronomy, 2020, 10, 1113.	1.3	32
32	Interactions between soil properties and tetracycline toxicity affecting to bacterial community growth in agricultural soil. Applied Soil Ecology, 2020, 147, 103437.	2.1	31
33	Copper fractionation and release from soils devoted to different crops. Journal of Hazardous Materials, 2009, 167, 797-802.	6.5	30
34	Co-selection for antibiotic tolerance in Cu-polluted soil is detected at higher Cu-concentrations than increased Cu-tolerance. Soil Biology and Biochemistry, 2013, 57, 953-956.	4.2	30
35	Adsorption-desorption of doxycycline in agricultural soils: Batch and stirred-flow-chamber experiments. Environmental Research, 2020, 186, 109565.	3.7	30
36	Competitive adsorption and transport of Cd, Cu, Ni and Zn in a mine soil amended with mussel shell. Chemosphere, 2014, 107, 379-385.	4.2	29

David FernÃindez-Calviño

#	Article	IF	CITATIONS
37	Estimation of adsorption/desorption Freundlich's affinity coefficients for oxytetracycline and chlortetracycline from soil properties: Experimental data and pedotransfer functions. Ecotoxicology and Environmental Safety, 2020, 196, 110584.	2.9	29
38	Changes in soil properties and in the growth of Lolium multiflorum in an acid soil amended with a solid waste from wineries. Bioresource Technology, 2008, 99, 6771-6779.	4.8	28
39	Changes in Cd, Cu, Ni, Pb and Zn Fractionation and Liberation Due to Mussel Shell Amendment on a Mine Soil. Land Degradation and Development, 2016, 27, 1276-1285.	1.8	28
40	Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: Pine bark, "oak ash―and mussel shell. Environmental Research, 2021, 195, 110814.	3.7	28
41	Adsorption and Desorption Behavior of Metalaxyl in Intensively Cultivated Acid Soils. Journal of Agricultural and Food Chemistry, 2011, 59, 7286-7293.	2.4	27
42	Comparison of batch, stirred flow chamber, and column experiments to study adsorption, desorption and transport of carbofuran within two acidic soils. Chemosphere, 2012, 88, 106-112.	4.2	27
43	Copper Retention Kinetics in Acid Soils. Soil Science Society of America Journal, 2008, 72, 63-72.	1.2	26
44	Heavy metals fractionation and desorption in pine bark amended mine soils. Journal of Environmental Management, 2017, 192, 79-88.	3.8	26
45	Paraquat and Diquat Sorption on Iron Oxide Coated Quartz Particles and the Effect of Phosphates. Journal of Chemical & Engineering Data, 2010, 55, 2668-2672.	1.0	24
46	Pollution of surface waters by metalaxyl and nitrate from non-point sources. Science of the Total Environment, 2013, 461-462, 282-289.	3.9	24
47	Assessing the effects of Cu and pH on microorganisms in highly acidic vineyard soils. European Journal of Soil Science, 2012, 63, 571-578.	1.8	23
48	Ecotoxicological assessment of propiconazole using soil bacterial and fungal growth assays. Applied Soil Ecology, 2017, 115, 27-30.	2.1	23
49	Competitive adsorption and desorption of three tetracycline antibiotics on bio-sorbent materials in binary systems. Environmental Research, 2020, 190, 110003.	3.7	22
50	Influence of phosphorus on Cu sorption kinetics: Stirred flow chamber experiments. Journal of Hazardous Materials, 2011, 185, 220-226.	6.5	21
51	Influence of mussel shell on As and Cr competitive and non-competitive sorption–desorption kinetics in a mine soil: stirred flow chamber experiments. Geoderma, 2014, 232-234, 300-308.	2.3	20
52	Cu Immobilization and <i>Lolium perenne</i> Development in an Acid Vineyard Soil Amended with Crushed Mussel Shell. Land Degradation and Development, 2017, 28, 762-772.	1.8	20
53	Use of biomass ash to reduce toxicity affecting soil bacterial community growth due to tetracycline antibiotics. Journal of Environmental Management, 2020, 269, 110838.	3.8	20
54	pH-dependent copper release in acid soils treated with crushed mussel shell. International Journal of Environmental Science and Technology, 2013, 10, 983-994.	1.8	19

#	Article	IF	CITATIONS
55	Influence of mussel shell, oak ash and pine bark on the adsorption and desorption of sulfonamides in agricultural soils. Journal of Environmental Management, 2020, 261, 110221.	3.8	19
56	Batch and stirred flow reactor experiments on Zn sorption in acid soils. Geoderma, 2010, 159, 417-424.	2.3	18
57	Coupled transport of humic acids and copper through saturated porous media. European Journal of Soil Science, 2012, 63, 708-716.	1.8	18
58	Copper and zinc in rhizospheric soil of wild plants growing in long-term acid vineyard soils. Insights on availability and metal remediation. Science of the Total Environment, 2019, 672, 389-399.	3.9	18
59	Comparison of Cu salts and commercial Cu based fungicides on toxicity towards microorganisms in soil. Environmental Pollution, 2020, 257, 113585.	3.7	18
60	Shortâ€scale distribution of copper fractions in a vineyard acid soil. Land Degradation and Development, 2008, 19, 190-197.	1.8	16
61	Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste. Journal of Environmental Management, 2015, 150, 435-443.	3.8	16
62	Influence of different abiotic and biotic factors on the metalaxyl and carbofuran dissipation. Chemosphere, 2013, 90, 2526-2533.	4.2	15
63	Modeling the influence of raindrop size on the wash-off losses of copper-based fungicides sprayed on potato (<i>Solanum tuberosum L.</i>) leaves. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 737-746.	0.7	15
64	Retention of quaternary ammonium herbicides by acid vineyard soils with different organic matter and Cu contents. Geoderma, 2017, 293, 26-33.	2.3	15
65	Short-term toxicity assessment of a triazine herbicide (terbutryn) underestimates the sensitivity of soil microorganisms. Soil Biology and Biochemistry, 2021, 154, 108130.	4.2	15
66	Mercury content in volcanic soils across Europe and its relationship with soil properties. Journal of Soils and Sediments, 2012, 12, 542-555.	1.5	14
67	Respiration parameters determined by the ISO-17155 method as potential indicators of copper pollution in vineyard soils after long-term fungicide treatment. Science of the Total Environment, 2013, 447, 25-31.	3.9	14
68	Effect of crushed mussel shell addition on bacterial growth in acid polluted soils. Applied Soil Ecology, 2015, 85, 65-68.	2.1	14
69	Using pine bark and mussel shell amendments to reclaim microbial functions in a Cu polluted acid mine soil. Applied Soil Ecology, 2018, 127, 102-111.	2.1	14
70	Efficacy of Different Waste and By-Products from Forest and Food Industries in the Removal/Retention of the Antibiotic Cefuroxime. Processes, 2021, 9, 1151.	1.3	14
71	Use of waste materials to prevent tetracycline antibiotics toxicity on the growth of soil bacterial communities. Environmental Research, 2021, 193, 110404.	3.7	13
72	Modeling losses of copper-based fungicide foliar sprays in wash-off under simulated rain. International Journal of Environmental Science and Technology, 2015, 12, 661-672.	1.8	12

David FernÃindez-Calviño

#	Article	IF	CITATIONS
73	Effect of Oxytetracycline and Chlortetracycline on Bacterial Community Growth in Agricultural Soils. Agronomy, 2020, 10, 1011.	1.3	12
74	Is the Total Concentration of a Heavy Metal in Soil a Suitable Tool for Assessing the Environmental Risk? Considering the Case of Copper. Journal of Chemical Education, 2017, 94, 1133-1136.	1.1	11
75	Chromium VI and Fluoride Competitive Adsorption on Different Soils and By-Products. Processes, 2019, 7, 748.	1.3	11
76	As(V) Sorption/Desorption on Different Waste Materials and Soil Samples. International Journal of Environmental Research and Public Health, 2017, 14, 803.	1.2	10
77	Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils. Agronomy, 2020, 10, 1220.	1.3	10
78	Photodegradation of Ciprofloxacin, Clarithromycin and Trimethoprim: Influence of pH and Humic Acids. Molecules, 2021, 26, 3080.	1.7	10
79	SARS-CoV-2 and other main pathogenic microorganisms in the environment: Situation in Galicia and Spain. Environmental Research, 2021, 197, 111049.	3.7	10
80	Copper content and distribution in vineyard soils from Betanzos (A Coruña, Spain). Spanish Journal of Soil Science, 0, 5, .	0.0	10
81	Cyprodinil retention on mixtures of soil and solid wastes from wineries. Effects of waste dose and ageing. Environmental Science and Pollution Research, 2014, 21, 9785-9795.	2.7	9
82	Retention of propiconazole and terbutryn on acid sandy-loam soils with different organic matter and Cu concentrations. Journal of Environmental Management, 2019, 248, 109346.	3.8	9
83	Effects of pine bark amendment on the transport of sulfonamide antibiotics in soils. Chemosphere, 2020, 248, 126041.	4.2	9
84	Soil Enzymatic Activities and Microbial Community Structure in Soils Polluted with Tetracycline Antibiotics. Agronomy, 2021, 11, 906.	1.3	9
85	Adsorption of Tetracycline and Sulfadiazine onto Three Different Bioadsorbents in Binary Competitive Systems. Processes, 2021, 9, 28.	1.3	9
86	Bacterial community tolerance to Cu in soils with geochemical baseline concentrations (GBCs) of heavy metals: Importance for pollution induced community tolerance (PICT) determinations using the leucine incorporation method. Soil Biology and Biochemistry, 2021, 155, 108157.	4.2	8
87	Comparing the effect of Cu-based fungicides and pure Cu salts on microbial biomass, microbial community structure and bacterial community tolerance to Cu. Journal of Hazardous Materials, 2021, 409, 124960.	6.5	7
88	Time-course evolution of bacterial community tolerance to tetracycline antibiotics in agricultural soils: A laboratory experiment. Chemosphere, 2022, 291, 132758.	4.2	7
89	ACID-BASE ADJUSTMENT AND CHEMICAL FRACTIONATION TO ASSESS COPPER AVAILABILITY IN SPANISH VINEYARD SOILS AND SEDIMENTS. Soil Science, 2008, 173, 807-819.	0.9	6
90	Copper release kinetics from a long-term contaminated acid soil using a stirred flow chamber: Effect of ionic strength and pH. Journal of Colloid and Interface Science, 2012, 367, 422-428.	5.0	6

1

#	Article	IF	CITATIONS
91	Pine Bark Amendment to Promote Sustainability in Cu-Polluted Acid Soils: Effects on Lolium perenne Growth and Cu Uptake. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	6
92	Editorial of the VSI "Antibiotics and heavy metals in the environment: Facing the challenge― Science of the Total Environment, 2019, 678, 30-32.	3.9	6
93	Influence of Soil Properties and Initial Concentration on the Fractionation of Nickel, Zinc, Copper and Lead in Soils Derived from Different Parent Materials. Agronomy, 2021, 11, 301.	1.3	6
94	Retention of the Antibiotic Cefuroxime onto Agricultural and Forest Soils. Applied Sciences (Switzerland), 2021, 11, 4663.	1.3	6
95	Influence of Physicochemical Properties and Parent Material on Chromium Fractionation in Soils. Processes, 2021, 9, 1073.	1.3	6
96	Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr, and Pb pollution. Soil, 2022, 8, 437-449.	2.2	6
97	Metalaxyl mobility in acid soils: evaluation using different methods. International Journal of Environmental Science and Technology, 2015, 12, 2179-2190.	1.8	5
98	Cu retention in an acid soil amended with perlite winery waste. Environmental Science and Pollution Research, 2016, 23, 3789-3798.	2.7	5
99	Carbon mineralization in acidic soils amended with an organo-mineral bentonite waste. Journal of Soil Science and Plant Nutrition, 2017, 17, 624-634.	1.7	5
100	Estimation of baseline levels of bacterial community tolerance to Cr, Ni, Pb, and Zn in unpolluted soils, a background for PICT (pollution-induced community tolerance) determination. Biology and Fertility of Soils, 2022, 58, 49-61.	2.3	5
101	The Toxicity Exerted by the Antibiotic Sulfadiazine on the Growth of Soil Bacterial Communities May Increase over Time. International Journal of Environmental Research and Public Health, 2020, 17, 8773.	1.2	4
102	The Effect of Clarithromycin Toxicity on the Growth of Bacterial Communities in Agricultural Soils. Processes, 2021, 9, 1303.	1.3	4
103	Degradation of Doxycycline, Enrofloxacin, and Sulfamethoxypyridazine under Simulated Sunlight at Different pH Values and Chemical Environments. Agronomy, 2022, 12, 260.	1.3	4
104	Retention and transport of mecoprop on acid sandy-loam soils. Ecotoxicology and Environmental Safety, 2018, 148, 82-88.	2.9	3
105	Modification of chemical properties, Cu fractionation and enzymatic activities in an acid vineyard soil amended with winery wastes: A field study. Journal of Environmental Management, 2017, 202, 167-177.	3.8	2
106	Nitrogen mineralization dynamics in acid vineyard soils amended with bentonite winery waste. Archives of Agronomy and Soil Science, 2018, 64, 805-818.	1.3	2
107	Investigating Flocculation Capacities of Different Cations and Their Implications for Soil Structure and Sustainability. Journal of Chemical Education, 2021, 98, 639-643.	1.1	2

108 Sorbents to control soil pollution. , 2021, , 691-700.

#	Article	IF	CITATIONS
109	Utilization of mussel shell to remediate soils polluted with heavy metals. , 2022, , 221-242.		1
110	Data on the use of sorbents to control pollution in Europe, with main focus on Spain and Galicia. , 2021, , 15-31.		0
111	Sorbents for antibiotics removal. , 2021, , 417-433.		0
112	By-Products from Forest Activities as Low-Cost Sorbents for Bioremediation of Effluents and Other Polluted Media. , 2020, , 1-14.		0
113	Biotic and Abiotic Contamination Due to Emerging Pollutants in Sewage Sludge and Soils: A Country-Based Perspective. Handbook of Environmental Chemistry, 2022, , 1.	0.2	0
114	Special Issue on "Soil and Sustainable Development: Challenges and Solutions― Processes, 2022, 10, 980.	1.3	0