Shinobu Takada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/759485/publications.pdf

Version: 2024-02-01

		759233	940533	
16	1,850 citations	12	16	
papers	citations	h-index	g-index	
17	17	17	2557	
17	17	17	2557	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	TERMINAL FLOWER2, an Arabidopsis Homolog of HETEROCHROMATIN PROTEIN1, Counteracts the Activation of FLOWERING LOCUS T by CONSTANS in the Vascular Tissues of Leaves to Regulate Flowering Time. Plant Cell, 2003, 15, 2856-2865.	6.6	419
2	Arabidopsis CUP-SHAPED COTYLEDON3 Regulates Postembryonic Shoot Meristem and Organ Boundary Formation. Plant Cell, 2006, 18, 2946-2957.	6.6	315
3	Arabidopsis TERMINAL FLOWER 2 Gene Encodes a Heterochromatin Protein 1 Homolog and Represses both FLOWERING LOCUS T to Regulate Flowering Time and Several Floral Homeotic Genes. Plant and Cell Physiology, 2003, 44, 555-564.	3.1	214
4	Stomatal Density is Controlled by a Mesophyll-Derived Signaling Molecule. Plant and Cell Physiology, 2010, 51, 1-8.	3.1	194
5	CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant Journal, 2003, 36, 687-696.	5 . 7	182
6	Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development (Cambridge), 2007, 134, 1141-1150.	2.5	109
7	Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the <i>Arabidopsis </i> i>embryo. Development (Cambridge), 2008, 135, 2839-2843.	2.5	109
8	Efficient Yeast One-/Two-Hybrid Screening Using a Library Composed Only of Transcription Factors in Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 2145-2151.	3.1	104
9	<i>ATML1</i> promotes epidermal cell differentiation in <i>Arabidopsis</i> shoots. Development (Cambridge), 2013, 140, 1919-1923.	2.5	74
10	Embryonic shoot apical meristem formation in higher plants. Journal of Plant Research, 2002, 115, 411-417.	2.4	51
11	Specification of epidermal cell fate in plant shoots. Frontiers in Plant Science, 2014, 5, 49.	3.6	24
12	$\mbox{ATML1}$ activity is restricted to the outermost cells of the embryo through post-transcriptional repressions. Development (Cambridge), 2019, 146, .	2.5	24
13	Post-Embryonic Induction of ATML1-SRDX Alters the Morphology of Seedlings. PLoS ONE, 2013, 8, e79312.	2.5	12
14	Cell–cell communication in Arabidopsis early embryogenesis. European Journal of Cell Biology, 2010, 89, 225-230.	3.6	9
15	A Quarter Century History of ATML1 Gene Research. Plants, 2021, 10, 290.	3.5	6
16	Induction of epidermal cell fate in Arabidopsis shoots. Plant Signaling and Behavior, 2013, 8, e26236.	2.4	4