Dmitry B Zorov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7594724/publications.pdf Version: 2024-02-01

0.2

1

#	Article	IF	CITATIONS
1	Computational modeling of mitochondrial K+- and H+-driven ATP synthesis. Journal of Molecular and Cellular Cardiology, 2022, 165, 9-18.	0.9	7
2	ATP synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-"uniporter―function: II. Ion and ATP synthase flux regulation. Function, 2022, 3, zqac001.	1.1	20
3	Gut Microbiota as a Source of Uremic Toxins. International Journal of Molecular Sciences, 2022, 23, 483.	1.8	19
4	Is the Mitochondrial Membrane Potential (â^†Î [°]) Correctly Assessed? Intracellular and Intramitochondrial Modifications of the â^†Î [°] Probe, Rhodamine 123. International Journal of Molecular Sciences, 2022, 23, 482.	1.8	15
5	ATP Synthase K+- and H+-Fluxes Drive ATP Synthesis and Enable Mitochondrial K+-"Uniporter― Function: I. Characterization of Ion Fluxes. Function, 2022, 3, zqab065.	1.1	25
6	Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats. FEBS Journal, 2022, 289, 5697-5713.	2.2	4
7	Setting the Record Straight: A New Twist on the Chemiosmotic Mechanism of Oxidative Phosphorylation. Function, 2022, 3, .	1.1	8
8	Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats. Cells, 2022, 11, 1409.	1.8	17
9	Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?. International Journal of Molecular Sciences, 2022, 23, 7408.	1.8	19
10	Mitochondrial Ca2+, redox environment and ROS emission in heart failure: Two sides of the same coin?. Journal of Molecular and Cellular Cardiology, 2021, 151, 113-125.	0.9	24
11	Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells, 2021, 10, 1273.	1.8	19
12	Dietary Restriction for Kidney Protection: Decline in Nephroprotective Mechanisms During Aging. Frontiers in Physiology, 2021, 12, 699490.	1.3	7
13	Neuroprotective Potential of Mild Uncoupling in Mitochondria. Pros and Cons. Brain Sciences, 2021, 11, 1050.	1.1	16
14	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 22 4.3	22 Td (editio 1,430
15	Bioenergetics of the Fibrosis. Biochemistry (Moscow), 2021, 86, 1599-1606.	0.7	2

17Effects of Recombinant Spidroin rS1/9 on Brain Neural Progenitors After Photothrombosis-Induced
Ischemia. Frontiers in Cell and Developmental Biology, 2020, 8, 823.1.88

K+-Driven ATP Synthesis in Isolated Heart Mitochondria. Biophysical Journal, 2020, 118, 129a.

18P0017ESTIMATION OF KIDNEY MITOCHONDRIA TOLERANCE VIA FLUORESCENCE MICROSCOPY. Nephrology
Dialysis Transplantation, 2020, 35, .0.40

16

#	Article	IF	CITATIONS
19	Mitochondria in the Nuclei of Rat Myocardial Cells. Cells, 2020, 9, 712.	1.8	8
20	A Combination of Kidney Ischemia and Injection of Isolated Mitochondria Leads to Activation of Inflammation and Increase in Mortality Rate in Rats. Bulletin of Experimental Biology and Medicine, 2020, 169, 213-217.	0.3	4
21	Mitochondrial ATP Synthase Utilizes Both K+ and H+ Conductances to Drive ATP Synthesis. Biophysical Journal, 2020, 118, 441a.	0.2	1
22	Microbiome-Metabolome Signature of Acute Kidney Injury. Metabolites, 2020, 10, 142.	1.3	29
23	Nonphosphorylating Oxidation in Mitochondria and Related Processes. Biochemistry (Moscow), 2020, 85, 1570-1577.	0.7	7
24	Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent. Biochemistry (Moscow), 2020, 85, 1578-1590.	0.7	7
25	Targeting Inflammation and Oxidative Stress as a Therapy for Ischemic Kidney Injury. Biochemistry (Moscow), 2020, 85, 1591-1602.	0.7	18
26	Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging, 2020, 12, 18693-18715.	1.4	12
27	Zwitterionic Protonophore Derived from 2-(2-Hydroxyaryl)alkenylphosphonium as an Uncoupler of Oxidative Phosphorylation. Bioconjugate Chemistry, 2019, 30, 2435-2443.	1.8	14
28	Pros and Cons of Use of Mitochondria-Targeted Antioxidants. Antioxidants, 2019, 8, 316.	2.2	20
29	Mitochondria as a Source and a Target for Uremic Toxins. International Journal of Molecular Sciences, 2019, 20, 3094.	1.8	39
30	Mitochondrial Damage and Mitochondria-Targeted Antioxidant Protection in LPS-Induced Acute Kidney Injury. Antioxidants, 2019, 8, 176.	2.2	51
31	Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells, 2019, 8, 258.	1.8	91
32	Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells, 2019, 8, 175.	1.8	65
33	Rapamycin Is Not Protective against Ischemic and Cisplatin-Induced Kidney Injury. Biochemistry (Moscow), 2019, 84, 1502-1512.	0.7	9
34	Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. International Journal of Molecular Sciences, 2019, 20, 6326.	1.8	33
35	Mitochondria-Associated Matrix Metalloproteinases 2 and 9 in Acute Renal Pathologies. Bulletin of Experimental Biology and Medicine, 2019, 166, 334-338.	0.3	6
36	Effect of Silk Fibroin on Neuroregeneration After Traumatic Brain Injury. Neurochemical Research, 2019, 44, 2261-2272.	1.6	21

#	Article	IF	CITATIONS
37	Functional Significance of the Mitochondrial Membrane Potential. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 20-26.	0.3	28
38	High Intrinsic Aerobic Endurance Capacity Preserves Cardiomyocyte Quality Control, Mitochondrial Fitness and Lifespan. Biophysical Journal, 2018, 114, 662a.	0.2	0
39	Mitochondrial membrane potential. Analytical Biochemistry, 2018, 552, 50-59.	1.1	1,161
40	FP237EFFECTS OF THE AGE ON ACUTE KIDNEY INJURY IN NEONATAL AND ADULT RATS. Nephrology Dialysis Transplantation, 2018, 33, i109-i109.	0.4	0
41	FP037INFLUENCE OF INFLAMMATION ON MMSC:ANTI-INFLAMMATORY PRIMING OR SWITCHING TO INFLAMMATORY PHENOTYPE. Nephrology Dialysis Transplantation, 2018, 33, i59-i60.	0.4	0
42	Pregnancy protects the kidney from acute ischemic injury. Scientific Reports, 2018, 8, 14534.	1.6	17
43	Mechanisms of Age-Dependent Loss of Dietary Restriction Protective Effects in Acute Kidney Injury. Cells, 2018, 7, 178.	1.8	20
44	Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle, 2018, 17, 1291-1309.	1.3	21
45	Comparative Study of the Severity of Renal Damage in Newborn and Adult Rats under Conditions of Ischemia/Reperfusion and Endotoxin Administration. Bulletin of Experimental Biology and Medicine, 2018, 165, 189-194.	0.3	3
46	Neuroprotective Effects of Mitochondria-Targeted Plastoquinone in a Rat Model of Neonatal Hypoxic–Ischemic Brain Injury. Molecules, 2018, 23, 1871.	1.7	35
47	Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules, 2018, 23, 687.	1.7	130
48	Mechanisms of LPS-Induced Acute Kidney Injury in Neonatal and Adult Rats. Antioxidants, 2018, 7, 105.	2.2	35
49	THE ROLE OF POLYAMINES IN FUNCTIONING OF REPRODUCTIVE SYSTEM CELLS. Tsitologiya, 2018, 60, 164-172.	0.2	4
50	CRITICAL FUNCTIONS OF MITOCHONDRIA IN THE ONSET OF PATHOLOGIES. , 2018, , .		0
51	Mitochondrial Aging: Is There a Mitochondrial Clock?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw184.	1.7	16
52	Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung and Circulation, 2017, 26, 648-659.	0.2	24
53	Quantification of mitochondrial morphology in situ. Cell and Tissue Biology, 2017, 11, 51-58.	0.2	1
54	The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Scientific Reports, 2017, 7, 44430.	1.6	35

#	Article	IF	CITATIONS
55	Effect of anesthetics on efficiency of remote ischemic preconditioning. Biochemistry (Moscow), 2017, 82, 1006-1016.	0.7	12
56	The Influence of Proinflammatory Factors on the Neuroprotective Efficiency of Multipotent Mesenchymal Stromal Cells in Traumatic Brain Injury. Bulletin of Experimental Biology and Medicine, 2017, 163, 528-534.	0.3	4
57	The role of oxidative stress in acute renal injury of newborn rats exposed to hypoxia and endotoxin. FEBS Journal, 2017, 284, 3069-3078.	2.2	18
58	Bacterial therapy and mitochondrial therapy. Biochemistry (Moscow), 2017, 82, 1549-1556.	0.7	5
59	Dysfunction of kidney endothelium after ischemia/reperfusion and its prevention by mitochondria-targeted antioxidant. Biochemistry (Moscow), 2016, 81, 1538-1548.	0.7	22
60	Changes in number of neurons, astrocytes and microglia in brain after ischemic stroke assessed by immunohistochemistry and immunoblotting. Cell and Tissue Biology, 2016, 10, 445-452.	0.2	2
61	Molecular and cellular interactions between mother and fetus. Pregnancy as a rejuvenating factor. Biochemistry (Moscow), 2016, 81, 1480-1487.	0.7	9
62	A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2463-2473.	1.1	28
63	Mechanisms of inflammatory injury of renal tubular cells in a cellular model of pyelonephritis. Biochemistry (Moscow), 2016, 81, 1240-1250.	0.7	3
64	The Use of Technetium-99m for Intravital Tracing of Transplanted Multipotent Stromal Cells. Bulletin of Experimental Biology and Medicine, 2016, 162, 153-159.	0.3	6
65	Mitochondria as a target for neuroprotection. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10, 28-36.	0.3	2
66	Do mitochondria have an immune system?. Biochemistry (Moscow), 2016, 81, 1229-1236.	0.7	4
67	The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chemico-Biological Interactions, 2016, 256, 64-70.	1.7	32
68	Protection of Neurovascular Unit Cells with Lithium Chloride and Sodium Valproate Prevents Brain Damage in Neonatal Ischemia/Hypoxia. Bulletin of Experimental Biology and Medicine, 2016, 160, 313-318.	0.3	10
69	Prospects for using stem and progenitor cells in the therapy of consequences of neonatal hypoxic-ischemic encephalopathy. Akusherstvo I Ginekologiya (Russian Federation), 2016, 5_2016, 55-66.	0.1	1
70	Mechanisms of improving the neuroprotective effects of multipotent stromal cells after Co-culturing with neurons. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 285-292.	0.3	0
71	Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury. Molecules, 2015, 20, 14487-14503.	1.7	46
72	Diseases and aging: Gender matters. Biochemistry (Moscow), 2015, 80, 1560-1570.	0.7	11

#	Article	IF	CITATIONS
73	Specific issues of mitochondrial fragmentation (Fission). Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 278-284.	0.3	0
74	Intramitochondrial accumulation of cationic Atto520-biotin proceeds via voltage-dependent slow permeation through lipid membrane. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1277-1284.	1.4	3
75	Magnetic resonance spectroscopy of the ischemic brain under lithium treatment. Link to mitochondrial disorders under stroke. Chemico-Biological Interactions, 2015, 237, 175-182.	1.7	23
76	Intercellular transfer of mitochondria. Biochemistry (Moscow), 2015, 80, 542-548.	0.7	24
77	Mitodiversity. Biochemistry (Moscow), 2015, 80, 532-541.	0.7	14
78	Intra-Arterial Administration of Multipotent Mesenchymal Stromal Cells Promotes Functional Recovery of the Brain After Traumatic Brain Injury. Bulletin of Experimental Biology and Medicine, 2015, 159, 528-533.	0.3	15
79	Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. Stem Cells Translational Medicine, 2015, 4, 1011-1020.	1.6	92
80	Kidney cell death in inflammation: The role of oxidative stress and mitochondria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, 8, 103-110.	0.3	0
81	Mitochondrial Targeting of Antioxidants. , 2014, , 323-354.		2
82	Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria. Biochemistry (Moscow), 2014, 79, 1017-1031.	0.7	39
83	Assessment of Long-Term Sensorimotor Deficit after Cerebral Ischemia/Hypoxia in Neonatal Rats. Neuroscience and Behavioral Physiology, 2014, 44, 879-887.	0.2	2
84	A mitochondria-targeted protonophoric uncoupler derived from fluorescein. Chemical Communications, 2014, 50, 15366-15369.	2.2	41
85	A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1739-1747.	0.5	34
86	The Mitochondrion as a Key Regulator of Ischaemic Tolerance and Injury. Heart Lung and Circulation, 2014, 23, 897-904.	0.2	40
87	Mitochondria-Targeted Antioxidants and Alzheimer's Disease. , 2014, , 195-201.		2
88	Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews, 2014, 94, 909-950.	13.1	3,274
89	Lithium salts — Simple but magic. Biochemistry (Moscow), 2014, 79, 740-749.	0.7	24
90	Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3434-3442.	1.1	24

#	Article	IF	CITATIONS
91	Mitochondria-Targeted Plastoquinone Antioxidant SkQ1 Prevents Amyloid-β-Induced Impairment of Long-Term Potentiation in Rat Hippocampal Slices. Journal of Alzheimer's Disease, 2013, 36, 377-383.	1.2	27
92	Role of oxidative stress and mitochondria in onset of urinary bladder dysfunction under acute urine retention. Biochemistry (Moscow), 2013, 78, 542-548.	0.7	13
93	Perspectives of mitochondrial medicine. Biochemistry (Moscow), 2013, 78, 979-990.	0.7	20
94	Inflammatory pre-conditioning of mesenchymal multipotent stromalÂcells improves their immunomodulatory potency in acute pyelonephritis in rats. Cytotherapy, 2013, 15, 679-689.	0.3	14
95	Nephroprotective effect of GSK-3β inhibition by lithium ions and δ-opioid receptor agonist dalargin on gentamicin-induced nephrotoxicity. Toxicology Letters, 2013, 220, 303-308.	0.4	31
96	Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3100-8.	3.3	81
97	Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. Biochemistry (Moscow), 2012, 77, 996-999.	0.7	38
98	Methods of Detection of Mesenchymal Stem Cells in the Kidneys during Therapy of Experimental Renal Pathologies. Bulletin of Experimental Biology and Medicine, 2012, 154, 145-151.	0.3	3
99	Stimulation of kainate toxicity by zinc in cultured cerebellar granule neurons and the role of mitochondria in this process. Toxicology Letters, 2012, 208, 36-40.	0.4	10
100	Glucose starvation stimulates Zn2+ toxicity in cultures of cerebellar granule neurons. Brain Research Bulletin, 2012, 87, 80-84.	1.4	7
101	Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. Biochemistry (Moscow), 2012, 77, 1029-1037.	0.7	52
102	N-Terminally Glutamate-Substituted Analogue of Gramicidin A as Protonophore and Selective Mitochondrial Uncoupler. PLoS ONE, 2012, 7, e41919.	1.1	16
103	The phenoptosis problem: What is causing the death of an organism? Lessons from acute kidney injury. Biochemistry (Moscow), 2012, 77, 742-753.	0.7	24
104	Mitochondria-targeted antioxidant SkQR1 ameliorates gentamycin-induced renal failure and hearing loss. Biochemistry (Moscow), 2012, 77, 666-670.	0.7	34
105	The Mitochondria-Targeted Antioxidants and Remote Kidney Preconditioning Ameliorate Brain Damage through Kidney-to-Brain Cross-Talk. PLoS ONE, 2012, 7, e51553.	1.1	43
106	Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 77-86.	1.8	104
107	Mitochondrial-Targeted Plastoquinone Derivatives. Effect on Senescence and Acute Age-Related Pathologies. Current Drug Targets, 2011, 12, 800-826.	1.0	147
108	In vivo injected mitochondria-targeted plastoquinone antioxidant SkQR1 prevents β-amyloid-induced decay of long-term potentiation in rat hippocampal slices. Biochemistry (Moscow), 2011, 76, 1367-1370.	0.7	34

#	Article	IF	CITATIONS
109	Synthetic and natural polyanions induce cytochrome c release from mitochondria in vitro and in situ. American Journal of Physiology - Cell Physiology, 2011, 300, C1193-C1203.	2.1	9
110	Analysis of Mitochondrial 3D-Deformation in Cardiomyocytes during Active Contraction Reveals Passive Structural Anisotropy of Orthogonal Short Axes. PLoS ONE, 2011, 6, e21985.	1.1	34
111	Vladimir Petrovich Skulachev seventy-fifths anniversary greetings. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2010, 4, 248-248.	0.3	Ο
112	Amelioration of aminoglycoside nephrotoxicity requires protection of renal mitochondria. Kidney International, 2010, 77, 841-843.	2.6	40
113	Inhibition of CSK-3β Decreases the Ischemia-Induced Death of Renal Cells. Bulletin of Experimental Biology and Medicine, 2010, 149, 303-307.	0.3	11
114	Acidosis-Induced Zinc-Dependent Death of Cultured Cerebellar Granule Neurons. Cellular and Molecular Neurobiology, 2010, 30, 877-883.	1.7	17
115	Flux of fluorescently labeled ATP through mitochondrial outer membrane can be regulated by hexokinase binding. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 68.	0.5	0
116	Evaluation of neuroprotective abilities of the novel mitochondria-targeted antioxidants. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 82.	0.5	0
117	Hexokinase inhibits flux of fluorescently labeled ATP through mitochondrial outer membrane porin. FEBS Letters, 2010, 584, 2397-2402.	1.3	21
118	Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Experimental Cell Research, 2010, 316, 2447-2455.	1.2	136
119	New-generation Skulachev ions exhibiting nephroprotective and neuroprotective properties. Biochemistry (Moscow), 2010, 75, 145-150.	0.7	51
120	Matching ATP supply and demand in mammalian heart. Annals of the New York Academy of Sciences, 2010, 1188, 133-142.	1.8	60
121	Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity. Neuroscience Letters, 2010, 482, 151-155.	1.0	12
122	Role of Glycogen Synthase Kinase-3Î ² in Cardioprotection. Circulation Research, 2009, 104, 1240-1252.	2.0	330
123	An attempt to prevent senescence: A mitochondrial approach. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 437-461.	0.5	359
124	Morphological Changes in the Kidneys of Rats with Postischemic Acute Renal Failure after Intrarenal Administration of Fetal Mesenchymal Stem Cells from Human Bone Marrow. Bulletin of Experimental Biology and Medicine, 2009, 147, 113-119.	0.3	4
125	Comparative Evaluation of Two Methods for Studies of Experimental Focal Ischemia: Magnetic Resonance Tomography and Triphenyltetrazoleum Detection of Brain Injuries. Bulletin of Experimental Biology and Medicine, 2009, 147, 269-272.	0.3	32
126	Safranine O as a fluorescent probe for mitochondrial membrane potential studied on the single particle level and in suspension. Biochemistry (Moscow), 2009, 74, 663-671.	0.7	21

#	Article	IF	CITATIONS
127	Glucose deprivation potentiates toxicity of ouabain and glutamate in cortical neurons cultured for different time periods. Neurochemical Journal, 2009, 3, 202-206.	0.2	3
128	Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovascular Research, 2009, 83, 213-225.	1.8	208
129	Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 796-803.	1.8	104
130	Effect of transitory glucose deprivation on mitochondrial structure and functions in cultured cerebellar granule neurons. Neuroscience Letters, 2009, 461, 140-144.	1.0	20
131	Protonophoric Activity Of Gramicidin A Modified By Charged Amino-acids At Its N-terminus. Biophysical Journal, 2009, 96, 535a.	0.2	0
132	Heterogeneity of Mitochondrial Potential as a Marker for Isolation of Pure Cardiomyoblast Population. Bulletin of Experimental Biology and Medicine, 2008, 146, 506-511.	0.3	9
133	<i>The Identity and Regulation of the Mitochondrial Permeability Transition Pore</i> . Annals of the New York Academy of Sciences, 2008, 1123, 197-212.	1.8	122
134	Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. Biochemistry (Moscow), 2008, 73, 149-155.	0.7	29
135	Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia. Biochemistry (Moscow), 2008, 73, 1171-1175.	0.7	35
136	Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and Age-related diseases (heart arrhythmia, heart infarctions,) Tj ETQq0 0 C)rg&7/Ov	erl a5½ 10 Tf
137	Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UVâ€irradiation: Protective effects of SkQ1, lithium ions and insulin. FEBS Letters, 2008, 582, 3117-3124.	1.3	53
138	Cellâ€toâ€cell crossâ€talk between mesenchymal stem cells and cardiomyocytes in coâ€culture. Journal of Cellular and Molecular Medicine, 2008, 12, 1622-1631.	1.6	196
139	S8.24 Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S53-S54.	0.5	0
140	Peak intensity analysis as a method for estimation of fluorescent probe binding to artificial and natural nanoparticles: Tetramethylrhodamine uptake by isolated mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2182-2190.	1.4	33
141	The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney International, 2007, 72, 1493-1502.	2.6	172
142	Paraquat potentiates glutamate toxicity in immature cultures of cerebellar granule neurons. Toxicology Letters, 2007, 174, 82-88.	0.4	19
143	Cellular mechanisms of brain hypoglycemia. Biochemistry (Moscow), 2007, 72, 471-478.	0.7	20
144	The mitochondrion as Janus Bifrons. Biochemistry (Moscow), 2007, 72, 1115-1126.	0.7	47

#	Article	IF	CITATIONS
145	Effects of ischemic and hypoxic preconditioning on the state of mitochondria and function of ischemic kidneys. Bulletin of Experimental Biology and Medicine, 2007, 143, 105-109.	0.3	8
146	Mitochondrial ROS-induced ROS release: An update and review. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 509-517.	0.5	892
147	Mitochondrial contact sites: Their role in energy metabolism and apoptosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 148-163.	1.8	129
148	Functional activity of mitochondria in cultured neural precursor cells. Bulletin of Experimental Biology and Medicine, 2006, 141, 142-146.	0.3	12
149	Mitochondrial regulation of production of reactive oxygen species and nitrogen in rat cells of kidney during ischemia/reperfusion. Doklady Biochemistry and Biophysics, 2005, 400, 80-83.	0.3	1
150	Reactive oxygen and nitrogen species: Friends or foes?. Biochemistry (Moscow), 2005, 70, 215-221.	0.7	51
151	Role of Mitochondria in the Mechanisms of Glutamate Toxicity. Biochemistry (Moscow), 2005, 70, 611-618.	0.7	11
152	Protection in the aged heart: preventing the heart-break of old age?. Cardiovascular Research, 2005, 66, 233-244.	1.8	127
153	Stability and Association with the Cytomatrix of Mitochondrial DNA in Spontaneously Immortalized Mouse Embryo Fibroblasts Containing or Lacking the Intermediate Filament Protein Vimentin. DNA and Cell Biology, 2005, 24, 710-735.	0.9	10
154	Comparative kinetic analysis reveals that inducer-specific ion release precedes the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 375-392.	0.5	30
155	Examining Intracellular Organelle Function Using Fluorescent Probes. Circulation Research, 2004, 95, 239-252.	2.0	77
156	The intra-mitochondrial cytochrome c distribution varies correlated to the formation of a complex between VDAC and the adenine nucleotide translocase: this affects Bax-dependent cytochrome c release. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1644, 27-36.	1.9	47
157	Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Molecular and Cellular Biochemistry, 2004, 256, 341-358.	1.4	128
158	Menadione reduces rotenone-induced cell death in cerebellar granule neurons. NeuroReport, 2004, 15, 2227-2231.	0.6	22
159	Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation, 2004, 113, 1535-1549.	3.9	854
160	Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotechnology, 2003, 21, 191-194.	9.4	304
161	Neuroprotective effects of the antifungal drug clotrimazole. Neuroscience, 2002, 113, 47-53.	1.1	45
162	Bax releases cytochrome c preferentially from a complex between porin and adenine nucleotide translocator. Hexokinase activity suppresses this effect. Molecular Biology Reports, 2002, 29, 93-96.	1.0	56

10

#	Article	IF	CITATIONS
163	Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D. Biochemical Journal, 2001, 358, 349.	1.7	60
164	Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D. Biochemical Journal, 2001, 358, 349-358.	1.7	80
165	Effect of isosmotic medium with low sodium content on mitochondria of cultured cerebellar granular cells. Bulletin of Experimental Biology and Medicine, 2000, 129, 33-35.	0.3	Ο
166	Reactive Oxygen Species (Ros-Induced) Ros Release. Journal of Experimental Medicine, 2000, 192, 1001-1014.	4.2	1,263
167	Inhibition of Na+,K+-ATPase activity in cultured rat cerebellar granule cells prevents the onset of apoptosis induced by low potassium. Neuroscience Letters, 2000, 283, 41-44.	1.0	58
168	Virus-induced permeability transition in mitochondria. FEBS Letters, 2000, 466, 305-309.	1.3	8
169	Short-term block of Na+ /K+ -ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells. FEBS Letters, 1999, 456, 41-44.	1.3	24
170	Proteinaceous complexes from mitochondrial contact sites. Biochemistry (Moscow), 1999, 64, 390-8.	0.7	6
171	Role of mitochondrial calcium transport in the control of substrate oxidation. , 1998, 184, 359-369.		150
172	The lack of extracellular Na+ exacerbates Ca2+ -dependent damage of cultured cerebellar granule cells. FEBS Letters, 1998, 434, 188-192.	1.3	7
173	The permeability transition pore induced under anaerobic conditions in mitochondria energized with ATP. FEBS Letters, 1998, 434, 313-316.	1.3	14
174	Role of mitochondrial calcium transport in the control of substrate oxidation. , 1998, , 359-369.		59
175	The Ca2+-induced pore opening in mitochondria energized by succinate-ferricyanide electron transport. FEBS Letters, 1997, 419, 137-140.	1.3	13
176	Mitochondria Revisited. Alternative Functions of Mitochondria. Bioscience Reports, 1997, 17, 507-520.	1.1	86
177	Calcium reduces mitochondrial membrane potential of cultured rat cerebellum granule cells under toxic action of glutamate. Bulletin of Experimental Biology and Medicine, 1997, 123, 326-327.	0.3	0
178	Neurotoxic glutamate treatment of cultured cerebellar granule cells induces Ca2+ -dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria. FEBS Letters, 1996, 392, 143-147.	1.3	83
179	Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1275, 10-15.	0.5	56
180	Toxic effect of glutamate causes mitochondria damage in granule cells of dissociated cultures of rat cerebellum. Bulletin of Experimental Biology and Medicine, 1995, 119, 365-367.	0.3	6

#	ARTICLE	IF	CITATIONS
181	Immunoelectron microscopic study of the distribution of porin on outer membranes of rat heart mitochondria. Journal of Bioenergetics and Biomembranes, 1995, 27, 93-99.	1.0	26
182	Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1374-1378.	3.3	196
183	Multiple conductance levels in rat heart inner mitochondrial membranes studied by patch clamping. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1105, 263-270.	1.4	43
184	Modulation of inner mitochondrial membrane channel activity. Journal of Bioenergetics and Biomembranes, 1992, 24, 99-110.	1.0	94
185	Voltage activation of heart inner mitochondrial membrane channels. Journal of Bioenergetics and Biomembranes, 1992, 24, 119-124.	1.0	78
186	Calcium modulation of mitochondrial inner membrane channel activity. Biochemical and Biophysical Research Communications, 1991, 176, 1183-1188.	1.0	89
187	Effects of amyl ester of unsubstituted rhodamine on respiration and Ca2+ transport in rat liver mitochondria. Biochemical and Biophysical Research Communications, 1991, 175, 1010-1016.	1.0	3
188	Effect of ADP/ATP antiporter conformational state on the suppression of the nonspecific permeability of the inner mitochondrial membrane by cyclosporine A. FEBS Letters, 1990, 277, 123-126.	1.3	43
189	Effect of cyclosporine A and oligomycin on non-specific permeability of the inner mitochondrial membrane. FEBS Letters, 1990, 270, 108-110.	1.3	24
190	Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes Journal of Cell Biology, 1988, 107, 481-495.	2.3	258
191	Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes Journal of Cell Biology, 1988, 107, 497-501.	2.3	19
192	Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum. FEBS Letters, 1983, 163, 311-314.	1.3	53
193	The effects of cold stress on respiration of diaphragm muscle. Journal of Bioenergetics and Biomembranes, 1973, 5, 119-128.	1.0	5