Liqiang Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7594526/publications.pdf Version: 2024-02-01

LIQUANC REN

#	Article	IF	CITATIONS
1	Ultrasound-Powered Micro-/Nanorobots: Fundamentals and Biomedical Applications. , 2022, , 29-60.		2
2	Acoustic Cell Separation Based on Density and Mechanical Properties. Journal of Biomechanical Engineering, 2020, 142, .	0.6	31
3	Thin Film PZT-Based PMUT Arrays for Deterministic Particle Manipulation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1606-1615.	1.7	20
4	3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 2019, 5, eaax3084.	4.7	199
5	Contactless, programmable acoustofluidic manipulation of objects on water. Lab on A Chip, 2019, 19, 3397-3404.	3.1	30
6	Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems. Physical Review Applied, 2018, 9, .	1.5	38
7	Fluorescence-Activated Cell Sorters: Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter (Small 40/2018). Small, 2018, 14, 1870185.	5.2	2
8	Standing Surface Acoustic Wave (SSAW)â€Based Fluorescenceâ€Activated Cell Sorter. Small, 2018, 14, e1801996.	5.2	83
9	Two Forces Are Better than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality. Accounts of Chemical Research, 2018, 51, 1948-1956.	7.6	93
10	Digital acoustofluidics enables contactless and programmable liquid handling. Nature Communications, 2018, 9, 2928.	5.8	134
11	High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser. IEEE Photonics Technology Letters, 2017, 29, 639-642.	1.3	16
12	Acoustic Separation of Nanoparticles in Continuous Flow. Advanced Functional Materials, 2017, 27, 1606039.	7.8	106
13	Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale. Scientific Reports, 2017, 7, 40479.	1.6	26
14	Separation: Acoustic Separation of Nanoparticles in Continuous Flow (Adv. Funct. Mater. 14/2017). Advanced Functional Materials, 2017, 27, .	7.8	10
15	Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chemical Communications, 2017, 53, 11465-11468.	2.2	59
16	Rheotaxis of Bimetallic Micromotors Driven by Chemical–Acoustic Hybrid Power. ACS Nano, 2017, 11, 10591-10598.	7.3	135
17	Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	25
18	Visible-light driven Si–Au micromotors in water and organic solvents. Nanoscale, 2017, 9, 11434-11438.	2.8	53

LIQIANG REN

#	Article	IF	CITATIONS
19	Acoustofluidic Transfer of Inflammatory Cells from Human Sputum Samples. Analytical Chemistry, 2016, 88, 5655-5661.	3.2	28
20	High-throughput acoustic separation of platelets from whole blood. Lab on A Chip, 2016, 16, 3466-3472.	3.1	106
21	Point-of-Care Technologies for the Advancement of Precision Medicine in Heart, Lung, Blood, and Sleep Disorders. IEEE Journal of Translational Engineering in Health and Medicine, 2016, 4, 1-10.	2.2	10
22	Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab on A Chip, 2016, 16, 2636-2643.	3.1	147
23	Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1522-1527.	3.3	448
24	Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab on A Chip, 2016, 16, 515-524.	3.1	73
25	A high-throughput acoustic cell sorter. Lab on A Chip, 2015, 15, 3870-3879.	3.1	126
26	An acoustofluidic sputum liquefier. Lab on A Chip, 2015, 15, 3125-3131.	3.1	51
27	Reusable acoustic tweezers for disposable devices. Lab on A Chip, 2015, 15, 4517-4523.	3.1	60
28	Acoustofluidic Fluorescence Activated Cell Sorter. Analytical Chemistry, 2015, 87, 12051-12058.	3.2	76
29	Ultrasensitive label-free coupled optofluidic ring laser sensor. Optics Letters, 2012, 37, 3873.	1.7	34
30	Coupled optofluidic ring laser for ultrahigh- sensitive sensing. Optics Express, 2011, 19, 22242.	1.7	59