chonghui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7594363/publications.pdf

Version: 2024-02-01

		257450	330143
38	1,718	24	37
papers	citations	h-index	g-index
20	20	20	1707
38	38	38	1707
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	MoS2-spaced bimetal composite structure as SERS-SPR sensor for glucose detection. Journal of Alloys and Compounds, 2022, 902, 163789.	5.5	16
2	High performance D-type plastic fiber SPR sensor based on a hyperbolic metamaterial composed of Ag/MgF ₂ . Journal of Materials Chemistry C, 2021, 9, 13647-13658.	5 . 5	25
3	Manipulating the surface-enhanced Raman spectroscopy (SERS) activity and plasmon-driven catalytic efficiency by the control of Ag NP/graphene layers under optical excitation. Nanophotonics, 2021, 10, 1529-1540.	6.0	48
4	Heterostructured Cu2O–Au nanowire as a dual-functional nanocomposite for environmental pollutant degradation and hydrogen peroxide sensing. Applied Optics, 2021, 60, 5936.	1.8	0
5	MoS ₂ -based multiple surface plasmonic coupling for enhanced surface-enhanced Raman scattering and photoelectrocatalytic performance utilizing the size effect. Optics Express, 2021, 29, 38768.	3.4	68
6	Fast multiphase analysis: Self-separation of mixed solution by a wettability-controlled CuO@Ag SERS substrate and its applications in pollutant detection. Sensors and Actuators B: Chemical, 2020, 307, 127663.	7.8	22
7	A 3D mutilayer curved plasmonic coupling array with abundant and uniform hot spots for surface-enhanced Raman scattering. Journal Physics D: Applied Physics, 2020, 53, 055101.	2.8	7
8	Role of Graphene in Constructing Multilayer Plasmonic SERS Substrate with Graphene/AgNPs as Chemical Mechanism—Electromagnetic Mechanism Unit. Nanomaterials, 2020, 10, 2371.	4.1	6
9	3D Ultrasensitive Polymers-Plasmonic Hybrid Flexible Platform for In-Situ Detection. Polymers, 2020, 12, 392.	4.5	9
10	Electric Field-Modulated Surface Enhanced Raman Spectroscopy by PVDF/Ag Hybrid. Scientific Reports, 2020, 10, 5269.	3.3	11
11	Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS. Optics Express, 2020, 28, 9174.	3.4	26
12	Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing. Nanophotonics, 2020, 9, 4761-4773.	6.0	136
13	<i>In-situ</i> electrospun aligned and maize-like AgNPs/PVA@Ag nanofibers for surface-enhanced Raman scattering on arbitrary surface. Nanophotonics, 2019, 8, 1719-1729.	6.0	42
14	Sensitive and selective surface plasmon resonance sensor employing a gold-supported graphene composite film/D-shaped fiber for dopamine detection. Journal Physics D: Applied Physics, 2019, 52, 195402.	2.8	27
15	Large-energy mode-locked ytterbium-doped linear-cavity fiber laser based on chemical vapor deposition-Bi2Se3 as a saturable absorber. Applied Optics, 2019, 58, 2695.	1.8	10
16	Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. Optics Express, 2019, 27, 3483.	3.4	48
17	3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale, 2018, 10, 5897-5905.	5.6	145
18	Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots. Sensors and Actuators B: Chemical, 2018, 263, 408-416.	7.8	29

#	Article	IF	CITATIONS
19	SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B: Chemical, 2018, 258, 163-171.	7.8	208
20	Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis. Sensors and Actuators B: Chemical, 2018, 255, 374-383.	7.8	42
21	Heterogeneous and cross-distributed metal structure hybridized with MoS ₂ as high-performance flexible SERS substrate. Optics Express, 2018, 26, 23831.	3.4	18
22	Flexible and stretchable SERS substrate based on a pyramidal PMMA structure hybridized with graphene oxide assivated AgNPs. Applied Surface Science, 2018, 455, 1171-1178.	6.1	69
23	High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA. Optical Materials Express, 2018, 8, 844.	3.0	29
24	3D hybrid MoS2/AgNPs/inverted pyramid PMMA resonant cavity system for the excellent flexible surface enhanced Raman scattering sensor. Sensors and Actuators B: Chemical, 2018, 274, 152-162.	7.8	33
25	3D Hybrid Plasmonic Nanostructures with Dense Hot Spots Using Monolayer MoS ₂ as Subâ€Nanometer Spacer. Advanced Materials Interfaces, 2018, 5, 1800661.	3.7	14
26	SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles. Optics Express, 2018, 26, 21784.	3.4	73
27	Constructing 3D and Flexible Plasmonic Structure for Highâ€Performance SERS Application. Advanced Materials Technologies, 2018, 3, 1800174.	5.8	65
28	High stability luminophores: fluorescent CsPbX $<$ sub $>$ 3 $<$ /sub $>$ (X = Cl, Br and I) nanofiber prepared by one-step electrospinning method. Optics Express, 2018, 26, 20649.	3.4	24
29	3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS ₂ hybrid with pyramid structure. Optics Express, 2018, 26, 21546.	3.4	92
30	A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS ₂ @Ag nanoparticles@pyramidal silicon. RSC Advances, 2017, 7, 5764-5773.	3.6	45
31	A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure. Journal Physics D: Applied Physics, 2017, 50, 165105.	2.8	58
32	Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications. Journal of Materials Chemistry C, 2017, 5, 3908-3915.	5.5	33
33	Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS ₂ hybrid nanostructures and Au–Ag bimetallic film. RSC Advances, 2017, 7, 47177-47182.	3.6	50
34	Dense AuNP/MoS ₂ hybrid fabrication on fiber membranes for molecule separation and SERS detection. RSC Advances, 2017, 7, 36516-36524.	3.6	23
35	Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate. Journal of Alloys and Compounds, 2017, 695, 1677-1684.	5.5	56
36	Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering. Optics Express, 2017, 25, 20631.	3.4	37

#	Article	IF	CITATION
37	Controlled-layer and large-area MoS_2 films encapsulated Au nanoparticle hybrids for SERS. Optics Express, 2016, 24, 26097.	3.4	36
38	Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering. Sensors and Actuators B: Chemical, 2016, 230, 645-652.	7.8	38