chonghui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7594363/publications.pdf Version: 2024-02-01

СНОМСНИЦИ

#	Article	IF	CITATIONS
1	SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B: Chemical, 2018, 258, 163-171.	7.8	208
2	3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale, 2018, 10, 5897-5905.	5.6	145
3	Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing. Nanophotonics, 2020, 9, 4761-4773.	6.0	136
4	3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS ₂ hybrid with pyramid structure. Optics Express, 2018, 26, 21546.	3.4	92
5	SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles. Optics Express, 2018, 26, 21784.	3.4	73
6	Flexible and stretchable SERS substrate based on a pyramidal PMMA structure hybridized with graphene oxide assivated AgNPs. Applied Surface Science, 2018, 455, 1171-1178.	6.1	69
7	MoS ₂ -based multiple surface plasmonic coupling for enhanced surface-enhanced Raman scattering and photoelectrocatalytic performance utilizing the size effect. Optics Express, 2021, 29, 38768.	3.4	68
8	Constructing 3D and Flexible Plasmonic Structure for Highâ€Performance SERS Application. Advanced Materials Technologies, 2018, 3, 1800174.	5.8	65
9	A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure. Journal Physics D: Applied Physics, 2017, 50, 165105.	2.8	58
10	Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate. Journal of Alloys and Compounds, 2017, 695, 1677-1684.	5.5	56
11	Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS ₂ hybrid nanostructures and Au–Ag bimetallic film. RSC Advances, 2017, 7, 47177-47182.	3.6	50
12	Manipulating the surface-enhanced Raman spectroscopy (SERS) activity and plasmon-driven catalytic efficiency by the control of Ag NP/graphene layers under optical excitation. Nanophotonics, 2021, 10, 1529-1540.	6.0	48
13	Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. Optics Express, 2019, 27, 3483.	3.4	48
14	A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS ₂ @Ag nanoparticles@pyramidal silicon. RSC Advances, 2017, 7, 5764-5773.	3.6	45
15	Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis. Sensors and Actuators B: Chemical, 2018, 255, 374-383.	7.8	42
16	<i>In-situ</i> electrospun aligned and maize-like AgNPs/PVA@Ag nanofibers for surface-enhanced Raman scattering on arbitrary surface. Nanophotonics, 2019, 8, 1719-1729.	6.0	42
17	Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering. Sensors and Actuators B: Chemical, 2016, 230, 645-652.	7.8	38
18	Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering. Optics Express, 2017, 25, 20631.	3.4	37

сномсниі Li

#	Article	IF	CITATIONS
19	Controlled-layer and large-area MoS_2 films encapsulated Au nanoparticle hybrids for SERS. Optics Express, 2016, 24, 26097.	3.4	36
20	Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications. Journal of Materials Chemistry C, 2017, 5, 3908-3915.	5.5	33
21	3D hybrid MoS2/AgNPs/inverted pyramid PMMA resonant cavity system for the excellent flexible surface enhanced Raman scattering sensor. Sensors and Actuators B: Chemical, 2018, 274, 152-162.	7.8	33
22	Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots. Sensors and Actuators B: Chemical, 2018, 263, 408-416.	7.8	29
23	High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA. Optical Materials Express, 2018, 8, 844.	3.0	29
24	Sensitive and selective surface plasmon resonance sensor employing a gold-supported graphene composite film/D-shaped fiber for dopamine detection. Journal Physics D: Applied Physics, 2019, 52, 195402.	2.8	27
25	Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS. Optics Express, 2020, 28, 9174.	3.4	26
26	High performance D-type plastic fiber SPR sensor based on a hyperbolic metamaterial composed of Ag/MgF ₂ . Journal of Materials Chemistry C, 2021, 9, 13647-13658.	5.5	25
27	High stability luminophores: fluorescent CsPbX ₃ (X = Cl, Br and I) nanofiber prepared by one-step electrospinning method. Optics Express, 2018, 26, 20649.	3.4	24
28	Dense AuNP/MoS ₂ hybrid fabrication on fiber membranes for molecule separation and SERS detection. RSC Advances, 2017, 7, 36516-36524.	3.6	23
29	Fast multiphase analysis: Self-separation of mixed solution by a wettability-controlled CuO@Ag SERS substrate and its applications in pollutant detection. Sensors and Actuators B: Chemical, 2020, 307, 127663.	7.8	22
30	Heterogeneous and cross-distributed metal structure hybridized with MoS ₂ as high-performance flexible SERS substrate. Optics Express, 2018, 26, 23831.	3.4	18
31	MoS2-spaced bimetal composite structure as SERS-SPR sensor for glucose detection. Journal of Alloys and Compounds, 2022, 902, 163789.	5.5	16
32	3D Hybrid Plasmonic Nanostructures with Dense Hot Spots Using Monolayer MoS ₂ as Subâ€Nanometer Spacer. Advanced Materials Interfaces, 2018, 5, 1800661.	3.7	14
33	Electric Field-Modulated Surface Enhanced Raman Spectroscopy by PVDF/Ag Hybrid. Scientific Reports, 2020, 10, 5269.	3.3	11
34	Large-energy mode-locked ytterbium-doped linear-cavity fiber laser based on chemical vapor deposition-Bi2Se3 as a saturable absorber. Applied Optics, 2019, 58, 2695.	1.8	10
35	3D Ultrasensitive Polymers-Plasmonic Hybrid Flexible Platform for In-Situ Detection. Polymers, 2020, 12, 392.	4.5	9
36	A 3D mutilayer curved plasmonic coupling array with abundant and uniform hot spots for surface-enhanced Raman scattering. Journal Physics D: Applied Physics, 2020, 53, 055101.	2.8	7

#	Article	IF	CITATIONS
37	Role of Graphene in Constructing Multilayer Plasmonic SERS Substrate with Graphene/AgNPs as Chemical Mechanism—Electromagnetic Mechanism Unit. Nanomaterials, 2020, 10, 2371.	4.1	6
38	Heterostructured Cu2O–Au nanowire as a dual-functional nanocomposite for environmental pollutant degradation and hydrogen peroxide sensing. Applied Optics, 2021, 60, 5936.	1.8	0