
R Gary Sawers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7593930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of the H-cluster framework of iron-only hydrogenase. Nature, 2005, 433, 610-613.	27.8	498
2	The genetic basis of tetrathionate respiration in Salmonella typhimurium. Molecular Microbiology, 1999, 32, 275-287.	2.5	230
3	The hydrogenases and formate dehydrogenases ofEscherichia coli. Antonie Van Leeuwenhoek, 1994, 66, 57-88.	1.7	221
4	Maturation of [NiFe]-hydrogenases in Escherichia coli. BioMetals, 2007, 20, 565-578.	4.1	177
5	Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12041-12046.	7.1	173
6	Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Molecular Microbiology, 1994, 11, 965-982.	2.5	165
7	The ArcBA Two-Component System of <i>Escherichia coli</i> Is Regulated by the Redox State of both the Ubiquinone and the Menaquinone Pool. Journal of Bacteriology, 2010, 192, 746-754.	2.2	148
8	A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system ofEscherichia coli. FEMS Microbiology Letters, 1990, 75, 383-398.	1.8	137
9	Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Molecular Microbiology, 1998, 27, 477-492.	2.5	137
10	Effects of Limited Aeration and of the ArcAB System on Intermediary Pyruvate Catabolism in Escherichia coli. Journal of Bacteriology, 2000, 182, 4934-4940.	2.2	132
11	Constitutive Expression of Escherichia coli tat Genes Indicates an Important Role for the Twin-Arginine Translocase during Aerobic and Anaerobic Growth. Journal of Bacteriology, 2001, 183, 1801-1804.	2.2	130
12	A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Molecular Microbiology, 1998, 29, 945-954.	2.5	128
13	Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. FEBS Journal, 1986, 156, 265-275.	0.2	123
14	RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum The GenBank accession number for the RirA sequence is CAC35510 Microbiology (United Kingdom), 2002, 148, 4059-4071.	1.8	114
15	Identification of a multiâ€protein reductive dehalogenase complex in <scp><i>D</i></scp> <i>ehalococcoides mccartyi</i> strain <scp>CBDB</scp> 1 suggests a proteinâ€dependent respiratory electron transport chain obviating quinone involvement. Environmental Microbiology, 2016, 18, 3044-3056.	3.8	106
16	Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches. Renewable and Sustainable Energy Reviews, 2017, 80, 1201-1216.	16.4	101
17	Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology (United Kingdom), 1999, 145, 2903-2912.	1.8	99
10	Anaprobia Formata and Hudrograp Matabaliam, FooSal Dlug, 2016, 7	5 4	05

Anaerobic Formate and Hydrogen Metabolism. EcoSal Plus, 2016, 7, .

5.4 95

#	Article	IF	CITATIONS
19	The aerobic/anaerobic interface. Current Opinion in Microbiology, 1999, 2, 181-187.	5.1	90
20	Extreme arsenic resistance by the acidophilic archaeon â€~Ferroplasma acidarmanus' Fer1. Extremophiles, 2007, 11, 425-434.	2.3	86
21	Insight into Catalysis of Nitrous Oxide Reductase from High-resolution Structures of Resting and Inhibitor-bound Enzyme from Achromobacter cycloclastes. Journal of Molecular Biology, 2006, 362, 55-65.	4.2	85
22	Atomic Resolution Structures of Native Copper Nitrite Reductase from Alcaligenes xylosoxidans and the Active Site Mutant Asp92Glu. Journal of Molecular Biology, 2003, 328, 429-438.	4.2	83
23	The Rhizobium leguminosarum tonB gene is required for the uptake of siderophore and haem as sources of iron. Molecular Microbiology, 2002, 41, 801-816.	2.5	79
24	Molecular insight into extreme copper resistance in the extremophilic archaeon â€~Ferroplasma acidarmanus' Fer1. Microbiology (United Kingdom), 2005, 151, 2637-2646.	1.8	79
25	STRUCTURAL BIOLOGY: PMF Through the Redox Loop. Science, 2002, 295, 1842-1843.	12.6	74
26	Specific transcriptional requirements for positive regulation of the anaerobically inducible pfl operon by ArcA and FNR. Molecular Microbiology, 1993, 10, 737-747.	2.5	71
27	Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	70
28	Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiology (United Kingdom), 2000, 146, 2977-2985.	1.8	67
29	Metabolic Deficiences Revealed in the Biotechnologically Important Model Bacterium Escherichia coli BL21(DE3). PLoS ONE, 2011, 6, e22830.	2.5	61
30	Gas vesicles in actinomycetes: old buoys in novel habitats?. Trends in Microbiology, 2005, 13, 350-354.	7.7	60
31	Physiology and Bioenergetics of [NiFe]-Hydrogenase 2-Catalyzed H ₂ -Consuming and H ₂ -Producing Reactions in Escherichia coli. Journal of Bacteriology, 2015, 197, 296-306.	2.2	60
32	Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiology Ecology, 2018, 94, .	2.7	59
33	Purification of ArcA and analysis of is specific interaction with the pfl promoter-regulatory region. Molecular Microbiology, 1995, 16, 597-607.	2.5	58
34	Signal transduction and bacterial conjugation: characterization of the role of ArcA in regulating conjugative transfer of the resistance plasmid R1. Journal of Molecular Biology, 1998, 277, 309-316.	4.2	58
35	Novel insights into the bioenergetics of mixed-acid fermentation: Can hydrogen and proton cycles combine to help maintain a proton motive force?. IUBMB Life, 2014, 66, 1-7.	3.4	58
36	Regulation of Cytochrome bd Expression in the Obligate Aerobe Azotobacter vinelandii by CydR (Fnr). Journal of Biological Chemistry, 2000, 275, 4679-4686.	3.4	56

#	Article	IF	CITATIONS
37	The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity. BMC Microbiology, 2011, 11, 173.	3.3	55
38	Expression of the Escherichia coli yfiD gene responds to intracellular pH and reduces the accumulation of acidic metabolic end products. Microbiology (United Kingdom), 2002, 148, 1015-1026.	1.8	54
39	Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae. Microbiology (United Kingdom), 2007, 153, 2074-2082.	1.8	52
40	Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron–sulfur cluster-containing small subunit. Archives of Microbiology, 2011, 193, 893-903.	2.2	51
41	HypD Is the Scaffold Protein for Fe-(CN) ₂ CO Cofactor Assembly in [NiFe]-Hydrogenase Maturation. Biochemistry, 2013, 52, 3289-3296.	2.5	51
42	The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology (United Kingdom), 2010, 156, 3166-3179.	1.8	50
43	Coordination of FocA and Pyruvate Formate-Lyase Synthesis in Escherichia coli Demonstrates Preferential Translocation of Formate over Other Mixed-Acid Fermentation Products. Journal of Bacteriology, 2013, 195, 1428-1435.	2.2	49
44	The CO and CNâ^'ligands to the active site Fe in [NiFe]-hydrogenase ofEscherichia colihave different metabolic origins. FEBS Letters, 2007, 581, 3317-3321.	2.8	48
45	Characterization of Escherichia coli [NiFe]-Hydrogenase Distribution During Fermentative Growth at Different pHs. Cell Biochemistry and Biophysics, 2012, 62, 433-440.	1.8	46
46	The obligate aerobic actinomycete <i>Streptomyces coelicolor</i> A3(2) survives extended periods of anaerobic stress. Environmental Microbiology, 2007, 9, 3143-3149.	3.8	45
47	Pyruvate Formate-Lyase Interacts Directly with the Formate Channel FocA to Regulate Formate Translocation. Journal of Molecular Biology, 2014, 426, 2827-2839.	4.2	45
48	Structure of Hydrogenase Maturation Protein HypF with Reaction Intermediates Shows Two Active Sites. Structure, 2011, 19, 1773-1783.	3.3	44
49	The anaerobic degradation of I -serine and I -threonine in enterobacteria: networks of pathways and regulatory signals. Archives of Microbiology, 1998, 171, 1-5.	2.2	43
50	The Blue Copper-Containing Nitrite Reductase from Alcaligenes xylosoxidans : Cloning of the nirA Gene and Characterization of the Recombinant Enzyme. Journal of Bacteriology, 1999, 181, 2323-2329.	2.2	43
51	Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism. EcoSal Plus, 2004, 1, .	5.4	43
52	Terminal reduction reactions of nitrate and sulfate assimilation in Streptomyces coelicolor A3(2): identification of genes encoding nitrite and sulfite reductases. Research in Microbiology, 2012, 163, 340-348.	2.1	43
53	High Resolution Structural Studies of Mutants Provide Insights into Catalysis and Electron Transfer Processes in Copper Nitrite Reductase. Journal of Molecular Biology, 2005, 350, 300-309.	4.2	42
54	Zymographic differentiation of [NiFe]-Hydrogenases 1, 2 and 3 of Escherichia coli K-12. BMC Microbiology, 2012, 12, 134.	3.3	40

#	Article	IF	CITATIONS
55	Biochemical and crystallographic studies of the Met144Ala, Asp92Asn and His254Phe mutants of the nitrite reductase from Alcaligenes xylosoxidans provide insight into the enzyme mechanism. Journal of Molecular Biology, 2002, 316, 51-64.	4.2	39
56	Dependence on the FOF1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. Journal of Bioenergetics and Biomembranes, 2011, 43, 645-650.	2.3	38
57	A-Type Carrier Protein ErpA Is Essential for Formation of an Active Formate-Nitrate Respiratory Pathway in Escherichia coli K-12. Journal of Bacteriology, 2012, 194, 346-353.	2.2	37
58	[NiFe]â€hydrogenase maturation: Isolation of a HypC–HypD complex carrying diatomic CO and CN ^{â^'} ligands. FEBS Letters, 2012, 586, 3882-3887.	2.8	36
59	The [NiFe]â€hydrogenase accessory chaperones HypC and HybG of <i>Escherichia coli</i> are iron―and carbon dioxideâ€binding proteins. FEBS Letters, 2013, 587, 2512-2516.	2.8	35
60	Delivery of Iron-Sulfur Clusters to the Hydrogen-Oxidizing [NiFe]-Hydrogenases in Escherichia coli Requires the A-Type Carrier Proteins ErpA and IscA. PLoS ONE, 2012, 7, e31755.	2.5	34
61	Unexpected oligomeric structure of the FocA formate channel of <i>Escherichia coli</i> : a paradigm for the formateހ"nitrite transporter family of integral membrane proteins. FEMS Microbiology Letters, 2010, 303, 69-75.	1.8	33
62	The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence. Microbiology (United Kingdom), 2005, 151, 4071-4078.	1.8	32
63	Biosynthesis of poly-β-hydroxybutyrate (PHB) is controlled by CydR (Fnr) in the obligate aerobeAzotobacter vinelandii. FEMS Microbiology Letters, 2001, 194, 215-220.	1.8	31
64	The iron-sulfur cluster in thel-serine dehydratase TdcG fromEscherichia coliis required for enzyme activity. FEBS Letters, 2004, 576, 442-444.	2.8	31
65	Oxygen-Dependent Control of Respiratory Nitrate Reduction in Mycelium of Streptomyces coelicolor A3(2). Journal of Bacteriology, 2014, 196, 4152-4162.	2.2	31
66	Transcriptional activation by FNR and CRP: reciprocity of bindingâ€site recognition. Molecular Microbiology, 1997, 23, 835-845.	2.5	30
67	A novel mechanism controls anaerobic and catabolite regulation of the Escherichia coli tdc operon. Molecular Microbiology, 2004, 39, 1285-1298.	2.5	30
68	The Glycyl Radical Enzyme TdcE Can Replace Pyruvate Formate-Lyase in Glucose Fermentation. Journal of Bacteriology, 1998, 180, 3509-3516.	2.2	30
69	Catalytic and spectroscopic analysis of blue copper-containing nitrite reductase mutants altered in the environment of the type 2 copper centre: implications for substrate interaction. Biochemical Journal, 2001, 353, 259-266.	3.7	28
70	Contribution of Hydrogenase 2 to Stationary Phase H2 Production by Escherichia coli During Fermentation of Glycerol. Cell Biochemistry and Biophysics, 2013, 66, 103-108.	1.8	28
71	A H ₂ â€oxidizing, 1,2,3â€trichlorobenzeneâ€reducing multienzyme complex isolated from the obligately organohalideâ€respiring bacterium <i>Dehalococcoides mccartyi</i> strain CBDB1. Environmental Microbiology Reports, 2017, 9, 618-625.	2.4	28
72	Hydrogen-oxidizing hydrogenases 1 and 2 of <i>Escherichia coli</i> regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiology Letters, 2013, 348, 143-148.	1.8	26

#	Article	IF	CITATIONS
73	X-ray structure of a blue copper nitrite reductase at high pH and in copper-free form at 1.9 Å resolution. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1110-1118.	2.5	25
74	A Universally Applicable and Rapid Method for Measuring the Growth of Streptomyces and Other Filamentous Microorganisms by Methylene Blue Adsorption-Desorption. Applied and Environmental Microbiology, 2013, 79, 4499-4502.	3.1	24
75	Identification of key residues in the formate channel FocA that control import and export of formate. Biological Chemistry, 2014, 395, 813-825.	2.5	24
76	Oxygen and Nitrate Respiration in Streptomyces coelicolor A3(2). Advances in Microbial Physiology, 2016, 68, 1-40.	2.4	24
77	Analysis of HypD Disulfide Redox Chemistry via Optimization of Fourier Transformed ac Voltammetric Data. Analytical Chemistry, 2017, 89, 1565-1573.	6.5	23
78	Differential turnover of the multiple processed transcripts of the Escherichia coli focA-pflB operon. Microbiology (United Kingdom), 2006, 152, 2197-2205.	1.8	21
79	The importance of iron in the biosynthesis and assembly of [NiFe]-hydrogenases. Biomolecular Concepts, 2014, 5, 55-70.	2.2	21
80	Biochemistry, physiology and molecular biology of glycyl radical enzymes. FEMS Microbiology Reviews, 1998, 22, 543-551.	8.6	20
81	Met144Ala mutation of the copper-containing nitrite reductase fromAlcaligenes xylosoxidansreverses the intramolecular electron transfer. FEBS Letters, 2004, 561, 173-176.	2.8	20
82	mRNA Secondary Structure Modulates Translation of Tat-Dependent Formate Dehydrogenase N. Journal of Bacteriology, 2004, 186, 6311-6315.	2.2	19
83	Modulation of NO binding to cytochrome c′ by distal and proximal haem pocket residues. Journal of Biological Inorganic Chemistry, 2008, 13, 531-540.	2.6	19
84	Development of a cellâ€free system reveals an oxygenâ€labile step in the maturation of [NiFe]â€hydrogenase 2 of <i>Escherichia coli</i> . FEBS Letters, 2010, 584, 4109-4114.	2.8	19
85	Expression of fnr Is Constrained by an Upstream IS 5 Insertion in Certain Escherichia coli K-12 Strains. Journal of Bacteriology, 2005, 187, 2609-2617.	2.2	18
86	Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12. Microbiology (United Kingdom), 2012, 158, 856-868.	1.8	18
87	Coordination of Synthesis and Assembly of a Modular Membrane-Associated [NiFe]-Hydrogenase Is Determined by Cleavage of the C-Terminal Peptide. Journal of Bacteriology, 2015, 197, 2989-2998.	2.2	18
88	The Influence of Oxygen on [NiFe]–Hydrogenase Cofactor Biosynthesis and How Ligation of Carbon Monoxide Precedes Cyanation. PLoS ONE, 2014, 9, e107488.	2.5	17
89	SlyD-dependent nickel delivery limits maturation of [NiFe]-hydrogenases in late-stationary phase Escherichia coli cells. Metallomics, 2015, 7, 683-690.	2.4	17
90	Evidence for an oxygen-sensitive iron–sulfur cluster in an immature large subunit species of Escherichia coli [NiFe]-hydrogenase 2. Biochemical and Biophysical Research Communications, 2012, 424, 158-163.	2.1	16

#	Article	IF	CITATIONS
91	A respiratory nitrate reductase active exclusively in resting spores of the obligate aerobe <i><scp>S</scp>treptomyces coelicolor</i> â€ <scp>A</scp> 3(2). Molecular Microbiology, 2013, 89, 1259-1273.	2.5	16
92	Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Current Biology, 2022, 32, 2189-2205.e6.	3.9	16
93	The soluble cytoplasmic Nâ€ŧerminal domain of the FocA channel gates bidirectional formate translocation. Molecular Microbiology, 2021, 115, 758-773.	2.5	15
94	Characterization of Transcriptional Regulation of Shewanella frigidimarina Fe(III)-Induced Flavocytochrome c Reveals a Novel Iron-Responsive Gene Regulation System. Journal of Bacteriology, 2003, 185, 4564-4571.	2.2	14
95	The role of the ferric-uptake regulator Fur and iron homeostasis in controlling levels of the [NiFe]-hydrogenases in Escherichia coli. International Journal of Hydrogen Energy, 2010, 35, 8938-8944.	7.1	14
96	Levels of control exerted by the Isc iron–sulfur cluster system on biosynthesis of the formate hydrogenlyase complex. Microbiology (United Kingdom), 2013, 159, 1179-1189.	1.8	14
97	Staphylococcus aureus and Pseudomonas aeruginosa Express and Secrete Human Surfactant Proteins. PLoS ONE, 2013, 8, e53705.	2.5	14
98	Selective selC-Independent Selenocysteine Incorporation into Formate Dehydrogenases. PLoS ONE, 2013, 8, e61913.	2.5	14
99	Fnr activates transcription from theP6promoter of thepfloperonin vitro. Molecular Microbiology, 1995, 18, 331-342.	2.5	13
100	Heterologous complementation studies in Escherichia coli with the Hyp accessory protein machinery from Chloroflexi provide insight into [NiFe]-hydrogenase large subunit recognition by the HypC protein family. Microbiology (United Kingdom), 2015, 161, 2204-2219.	1.8	13
101	Interspecies compatibility of selenoprotein biosynthesis in Enterobacteriaceae. Archives of Microbiology, 1991, 155, 221-228.	2.2	12
102	Aconitase B Is Required for Optimal Growth of Xanthomonas campestris pv. vesicatoria in Pepper Plants. PLoS ONE, 2012, 7, e34941.	2.5	12
103	Dormancy: Illuminating How a Microbial Sleeping Beauty Awakens. Current Biology, 2016, 26, R1139-R1141.	3.9	12
104	Interdependence of Escherichia coli formate dehydrogenase and hydrogen-producing hydrogenases during mixed carbon sources fermentation at different pHs. International Journal of Hydrogen Energy, 2021, 46, 5085-5099.	7.1	12
105	A single amino acid exchange converts FocA into a unidirectional efflux channel for formate. Microbiology (United Kingdom), 2022, 168, .	1.8	12
106	The FocA channel functions to maintain intracellular formate homeostasis during Escherichia coli fermentation. Microbiology (United Kingdom), 2022, 168, .	1.8	12
107	Evidence for novel processing of the anaerobically inducible dicistronic focA-pfl mRNA transcript in Escherichia coli. Molecular Microbiology, 2005, 58, 1441-1453.	2.5	11
108	Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl–Group Channeling during [NiFe]–Hydrogenase Cofactor Generation. PLoS ONE, 2015, 10, e0133118.	2.5	11

#	Article	IF	CITATIONS
109	Observation of an Unprecedented Cu Bis-His Site: Crystal Structure of the H129V Mutant of Nitrite Reductase. Inorganic Chemistry, 2004, 43, 7591-7593.	4.0	10
110	Transcript analysis ofEscherichia coliK-12 insertion element IS5. FEMS Microbiology Letters, 2005, 244, 397-401.	1.8	10
111	Iron restriction induces preferential down-regulation of H2-consuming over H2-evolving reactions during fermentative growth of Escherichia coli. BMC Microbiology, 2011, 11, 196.	3.3	10
112	<i>oâ€</i> Phthalate derived from plastics' plasticizers and a bacterium's solution to its anaerobic degradation. Molecular Microbiology, 2018, 108, 595-600.	2.5	10
113	Mapping Cell Envelope and Periplasm Protein Interactions of <i>Escherichia coli</i> Respiratory Formate Dehydrogenases by Chemical Cross-Linking and Mass Spectrometry. Journal of Proteome Research, 2014, 13, 5524-5535.	3.7	9
114	Anaerobic nitrate respiration in the aerobe <i>Streptomyces coelicolor</i> A3(2): helping maintain a proton gradient during dormancy. Environmental Microbiology Reports, 2019, 11, 645-650.	2.4	9
115	Activity of Spore-Specific Respiratory Nitrate Reductase 1 of <i>Streptomyces coelicolor</i> A3(2) Requires a Functional Cytochrome <i>bcc-aa</i> ₃ Oxidase Supercomplex. Journal of Bacteriology, 2019, 201, .	2.2	9
116	The impact of species, respiration type, growth phase and genetic inventory on absolute metal content of intact bacterial cells. Metallomics, 2019, 11, 925-935.	2.4	9
117	Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli. Microbiology (United Kingdom), 2017, 163, 878-890.	1.8	9
118	Aerobic activation of transcription of the anaerobically inducibleEscherichia coli focA-pfloperon by fumarate nitrate regulator. FEMS Microbiology Letters, 2006, 255, 262-267.	1.8	8
119	The glycyl-radical enzyme 2-ketobutyrate formate-lyase, TdcE, interacts specifically with the formate-translocating FNT-channel protein FocA. Biochemistry and Biophysics Reports, 2016, 6, 185-189.	1.3	8
120	Cytochrome <i>bd</i> Oxidase Has an Important Role in Sustaining Growth and Development of Streptomyces coelicolor A3(2) under Oxygen-Limiting Conditions. Journal of Bacteriology, 2018, 200, .	2.2	8
121	The iron–sulfurâ€containing HypCâ€HypD scaffold complex of the [NiFe]â€hydrogenase maturation machinery is an ATPase. FEBS Open Bio, 2019, 9, 2072-2079.	2.3	8
122	Delimiting the Function of the C-Terminal Extension of the Escherichia coli [NiFe]-Hydrogenase 2 Large Subunit Precursor. Frontiers in Microbiology, 2019, 10, 2223.	3.5	8
123	The ECF $\tilde{A}\hat{A}f$ factor Rpol of R. leguminosarum initiates transcription of the vbsGSO and vbsADL siderophore biosynthetic genes in vitro. FEMS Microbiology Letters, 2003, 223, 239-244.	1.8	7
124	Coordinate synthesis of azurin I and copper nitrite reductase in Alcaligenes xylosoxidans during denitrification. Archives of Microbiology, 2006, 186, 241-249.	2.2	7
125	Chromogenic assessment of the three molybdo-selenoprotein formate dehydrogenases in Escherichia coli. Biochemistry and Biophysics Reports, 2015, 1, 62-67.	1.3	7
126	The C-terminal Six Amino Acids of the FNT Channel FocA Are Required for Formate Translocation But Not Homopentamer Integrity. Frontiers in Microbiology, 2017, 8, 1616.	3.5	7

#	Article	IF	CITATIONS
127	Cytochrome <i>bcc-aa3</i> Oxidase Supercomplexes in the Aerobic Respiratory Chain of <i>Streptomyces coelicolor</i> A3(2). Journal of Molecular Microbiology and Biotechnology, 2018, 28, 255-268.	1.0	7
128	Influence of <scp>C₄â€Dcu</scp> transporters on hydrogenase and formate dehydrogenase activities in stationary phaseâ€grown fermenting <scp><i>Escherichia coli</i></scp> . IUBMB Life, 2020, 72, 1680-1685.	3.4	7
129	Phosphate and oxygen limitation induce respiratory nitrate reductase 3 synthesis in stationary-phase mycelium of Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2016, 162, 1689-1697.	1.8	7
130	Hypoxia-induced synthesis of respiratory nitrate reductase 2 of Streptomyces coelicolor A3(2) depends on the histidine kinase OsdK in mycelium but not in spores. Microbiology (United Kingdom), 2019, 165, 905-916.	1.8	7
131	Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN)2CO group during maturation of E. coli [NiFe]-hydrogenase 2. Scientific Reports, 2021, 11, 24362.	3.3	7
132	The tdcE Gene in Escherichia Coli Strain W3110 is Separated from the Rest of the tdc Operon by Insertion of IS5 Elements. DNA Sequence, 1998, 9, 183-188.	0.7	6
133	Crystallization and preliminary X-ray analysis of theE. colihypothetical protein TdcF. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1076-1078.	2.5	5
134	Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1. Microorganisms, 2021, 9, 365.	3.6	5
135	Interplay between the Conserved Pore Residues Thr-91 and His-209 Controls Formate Translocation through the FocA Channel. Microbial Physiology, 2022, 32, 95-107.	2.4	5
136	Heterologous metalloprotein biosynthesis inEscherichia coli: conditions for the overproduction of functional copper-containing nitrite reductase and azurin fromAlcaligenes xylosoxidans. Journal of Synchrotron Radiation, 2005, 12, 13-18.	2.4	4
137	Insights Into the Redox Sensitivity of Chloroflexi Hup-Hydrogenase Derived From Studies in Escherichia coli: Merits and Pitfalls of Heterologous [NiFe]-Hydrogenase Synthesis. Frontiers in Microbiology, 2018, 9, 2837.	3.5	4
138	Coâ€purification of nitrate reductase 1 with components of the cytochrome <i>bccâ€aa₃</i> oxidase supercomplex from spores of <i>Streptomyces coelicolor</i> A3(2). FEBS Open Bio, 2021, 11, 652-669.	2.3	4
139	Ferredoxin has a pivotal role in the biosynthesis of the hydrogen-oxidizing hydrogenases in Escherichia coli. International Journal of Hydrogen Energy, 2014, 39, 18533-18542.	7.1	3
140	The Extended C-Terminal α-Helix of the HypC Chaperone Restricts Recognition of Large Subunit Precursors by the Hyp-Scaffold Machinery during [NiFe]-Hydrogenase Maturation in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 2018, 28, 87-97.	1.0	3
141	A paean to the ineffable Marjory Stephenson. Microbiology (United Kingdom), 2022, 168, .	1.8	3
142	The Autonomous Glycyl Radical Protein GrcA Restores Activity to Inactive Full-Length Pyruvate Formate-Lyase <i>In Vivo</i> . Journal of Bacteriology, 2022, 204, e0007022.	2.2	3
143	The structure of the Met144Leu mutant of copper nitrite reductase from Alcaligenes xylosoxidans provides the first glimpse of a protein–protein complex with azurin II. Journal of Biological Inorganic Chemistry, 2007, 12, 789-796.	2.6	2
144	Escherichia coli genes whose products are involved in selenium metabolism. Journal of Trace Elements in Experimental Medicine, 2001, 14, 227-240.	0.8	2

#	Article	IF	CITATIONS
145	Exchange of a Single Amino Acid Residue in the HybG Chaperone Allows Maturation of All H2-Activating [NiFe]-Hydrogenases in Escherichia coli. Frontiers in Microbiology, 2022, 13, 872581.	3.5	2
146	Of mothballs and old yellow enzymes. Molecular Microbiology, 2015, 95, 157-161.	2.5	1
147	Setting the Stage: Genes Controlling Mechanosensation and Ca 2+ Signaling in Escherichia coli. Journal of Bacteriology, 2021, 203, .	2.2	1
148	Little red floaters: gas vesicles in an enterobacterium. Environmental Microbiology, 2016, 18, 1091-1093.	3.8	0