Wen-Tao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7593426/publications.pdf

Version: 2024-02-01

		1163117	1125743
17	339	8	13
papers	citations	h-index	g-index
17	17	17	423
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cellâ€Inspired Allâ€Aqueous Microfluidics: From Intracellular Liquid–Liquid Phase Separation toward Advanced Biomaterials. Advanced Science, 2020, 7, 1903359.	11.2	111
2	ER stress mediates homocysteine-induced endothelial dysfunction: Modulation of IKCa and SKCa channels. Atherosclerosis, 2015, 242, 191-198.	0.8	63
3	Microfluidics in cardiovascular disease research: state of the art and future outlook. Microsystems and Nanoengineering, 2021, 7, 19.	7.0	47
4	Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Delivery, 2020, 27, 200-215.	5.7	34
5	Tetramethylpyrazine suppresses angiotensin II-induced soluble epoxide hydrolase expression in coronary endothelium via anti-ER stress mechanism. Toxicology and Applied Pharmacology, 2017, 336, 84-93.	2.8	22
6	Protection of dilator function of coronary arteries from homocysteine by tetramethylpyrazine: Role of ER stress in modulation of BKCa channels. Vascular Pharmacology, 2019, 113, 27-37.	2.1	17
7	Activation of PERK branch of ER stress mediates homocysteine-induced BKCa channel dysfunction in coronary artery via FoxO3a-dependent regulation of atrogin-1. Oncotarget, 2017, 8, 51462-51477.	1.8	12
8	Impairment of Coronary Endothelial Function by Hypoxia-Reoxygenation Involves TRPC3 Inhibition-mediated KCa Channel Dysfunction: Implication in Ischemia-Reperfusion Injury. Scientific Reports, 2017, 7, 5895.	3.3	9
9	Calcium-activated potassium channel family in coronary artery bypass grafts. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, e399-e409.	0.8	8
10	Clinical outcomes with large macular holes using the tiled transplantation internal limiting membrane pedicle flap technique. International Journal of Ophthalmology, 2019, 12, 246-251.	1.1	6
11	Evaluation of the Anastomosis Canal in Lateral Maxillary Sinus Wall With Cone Beam Computerized Tomography: A Clinical Study. Journal of Oral Implantology, 2018, 44, 5-13.	1.0	4
12	Homocysteine alters vasoreactivity of human internal mammary artery by affecting the KCa channel family. Annals of Translational Medicine, 2021, 9, 625-625.	1.7	3
13	del Nido cardioplegia better preserves cardiac diastolic function but histidine–tryptophan–ketoglutarate is better for endothelial function. European Journal of Cardio-thoracic Surgery, 2022, , .	1.4	2
14	Endoplasmic reticulum stress mediates homocysteine-induced hypertrophy of cardiac cells through activation of cyclic nucleotide phosphodiesterase 1C. Acta Biochimica Et Biophysica Sinica, 2022, 54, 388-399.	2.0	1
15	SIRT1â€mediated Lysine Crotonylation is Involved in the Regulation of CaMKII Activity in Myocardium. FASEB Journal, 2022, 36, .	0.5	0
16	Comparison of del Nido and Histidineâ€tryptophanâ€ketoglutarate cardioplegic solutions on cardiac and endothelial function. FASEB Journal, 2022, 36, .	0.5	0
17	Soluble Epoxide Hydrolase Inhibitor Prevents Homocysteineâ€induced Cardiac Hypertrophy via Epoxyeicosatrienoic Acid–mediated Inhibition of TRPC3 Channels. FASEB Journal, 2022, 36, .	0.5	O