Jean Bernard Lasserre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7593317/publications.pdf

Version: 2024-02-01

246 papers 8,946 citations

38 h-index 79 g-index

256 all docs

256 docs citations

256 times ranked 3181 citing authors

#	Article	IF	CITATIONS
1	Global Optimization with Polynomials and the Problem of Moments. SIAM Journal on Optimization, 2001, 11, 796-817.	1.2	1,766
2	Discrete-Time Markov Control Processes. , 1996, , .		647
3	GloptiPoly 3: moments, optimization and semidefinite programming. Optimization Methods and Software, 2009, 24, 761-779.	1.6	376
4	Further Topics on Discrete-Time Markov Control Processes. , 1999, , .		292
5	GloptiPoly. ACM Transactions on Mathematical Software, 2003, 29, 165-194.	1.6	285
6	Convergent SDPâ∈Relaxations in Polynomial Optimization with Sparsity. SIAM Journal on Optimization, 2006, 17, 822-843.	1.2	212
7	Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations. SIAM Journal on Control and Optimization, 2008, 47, 1643-1666.	1.1	173
8	Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback. IEEE Transactions on Automatic Control, 2006, 51, 192-202.	3 . 6	171
9	An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs. SIAM Journal on Optimization, 2002, 12, 756-769.	1.2	139
10	A modified shifting bottleneck procedure for job-shop scheduling. International Journal of Production Research, 1993, 31, 923-932.	4.9	120
11	An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs. Lecture Notes in Computer Science, 2001, , 293-303.	1.0	113
12	An analytical expression and an algorithm for the volume of a convex polyhedron inR n. Journal of Optimization Theory and Applications, 1983, 39, 363-377.	0.8	112
13	Markov Chains and Invariant Probabilities. , 2003, , .		101
14	A trace inequality for matrix product. IEEE Transactions on Automatic Control, 1995, 40, 1500-1501.	3.6	98
15	Multi-resource shop scheduling with resource flexibility. European Journal of Operational Research, 1998, 107, 289-305.	3.5	94
16	Semidefinite Programming vs. LP Relaxations for Polynomial Programming. Mathematics of Operations Research, 2002, 27, 347-360.	0.8	92
17	Solving nonconvex optimization problems. IEEE Control Systems, 2004, 24, 72-83.	1.0	89
18	Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Computational Mechanics, 2015, 56, 967-981.	2.2	78

#	Article	IF	CITATIONS
19	Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals. Foundations of Computational Mathematics, 2008, 8, 607-647.	1.5	77
20	A semidefinite programming approach to the generalized problem of moments. Mathematical Programming, 2007, 112, 65-92.	1.6	73
21	Convexity in SemiAlgebraic Geometry and Polynomial Optimization. SIAM Journal on Optimization, 2009, 19, 1995-2014.	1.2	71
22	Lot Streaming in Job-Shop Scheduling. Operations Research, 1997, 45, 584-595.	1.2	66
23	Integration on a convex polytope. Proceedings of the American Mathematical Society, 1998, 126, 2433-2441.	0.4	61
24	Approximate Volume and Integration for Basic Semialgebraic Sets. SIAM Review, 2009, 51, 722-743.	4.2	60
25	Exploiting Symmetries in SDP-Relaxations for Polynomial Optimization. Mathematics of Operations Research, 2013, 38, 122-141.	0.8	59
26	Reachable, controllable sets and stabilizing control of constrained linear systems. Automatica, 1993, 29, 531-536.	3.0	56
27	Approximation Schemes for Infinite Linear Programs. SIAM Journal on Optimization, 1998, 8, 973-988.	1.2	55
28	Integration of lotsizing and scheduling decisions in a job-shop. European Journal of Operational Research, 1994, 75, 413-426.	3.5	52
29	A New Look at Nonnegativity on Closed Sets and Polynomial Optimization. SIAM Journal on Optimization, 2011, 21, 864-885.	1.2	52
30	SOS approximations of nonnegative polynomials via simple high degree perturbations. Mathematische Zeitschrift, 2007, 256, 99-112.	0.4	48
31	Bounds on measures satisfying moment conditions. Annals of Applied Probability, 2002, 12, 1114.	0.6	46
32	Convex sets with semidefinite representation. Mathematical Programming, 2009, 120, 457-477.	1.6	46
33	PRICING A CLASS OF EXOTIC OPTIONS VIA MOMENTS AND SDP RELAXATIONS. Mathematical Finance, 2006, 16, 469-494.	0.9	45
34	A bounded degree SOS hierarchy for polynomial optimization. EURO Journal on Computational Optimization, 2017, 5, 87-117.	1.5	45
35	Modeling crack discontinuities without elementâ€partitioning in the extended finite element method. International Journal for Numerical Methods in Engineering, 2017, 110, 1021-1048.	1.5	44
36	Zero-Sum Stochastic Games in Borel Spaces: Average Payoff Criteria. SIAM Journal on Control and Optimization, 2000, 39, 1520-1539.	1.1	43

#	Article	IF	CITATIONS
37	On representations of the feasible set in convex optimization. Optimization Letters, 2010, 4, 1-5.	0.9	43
38	On the importance of sequencing decisions in production planning and scheduling. International Transactions in Operational Research, 2002, 9, 779-793.	1.8	41
39	A Sum of Squares Approximation of Nonnegative Polynomials. SIAM Journal on Optimization, 2006, 16, 751-765.	1.2	41
40	A Sum of Squares Approximation of Nonnegative Polynomials. SIAM Review, 2007, 49, 651-669.	4.2	41
41	Exact Solutions to Super Resolution on Semi-Algebraic Domains in Higher Dimensions. IEEE Transactions on Information Theory, 2017, 63, 621-630.	1.5	41
42	The Inverse Moment Problem for Convex Polytopes. Discrete and Computational Geometry, 2012, 48, 596-621.	0.4	39
43	TSSOS: A Moment-SOS Hierarchy That Exploits Term Sparsity. SIAM Journal on Optimization, 2021, 31, 30-58.	1.2	37
44	Error bounds for rolling horizon policies in discrete-time Markov control processes. IEEE Transactions on Automatic Control, 1990, 35, 1118-1124.	3.6	36
45	Chordal-TSSOS: A Moment-SOS Hierarchy That Exploits Term Sparsity with Chordal Extension. SIAM Journal on Optimization, 2021, 31, 114-141.	1.2	36
46	Polynomials nonnegative on a grid and discrete optimization. Transactions of the American Mathematical Society, 2001, 354, 631-649.	0.5	34
47	Polynomial Programming: LP-Relaxations Also Converge. SIAM Journal on Optimization, 2005, 15, 383-393.	1.2	34
48	Fast and Accurate Computation of Orbital Collision Probability for Short-Term Encounters. Journal of Guidance, Control, and Dynamics, 2016, 39, 1009-1021.	1.6	34
49	Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity. Mathematical Programming Computation, 2018, 10, 1-32.	3.2	33
50	Planning and scheduling in a multi-site environment. Production Planning and Control, 1999, 10, 19-28.	5.8	32
51	Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions. IEEE Transactions on Automatic Control, 2012, 57, 1456-1467.	3.6	31
52	Average cost optimal policies for Markov control processes with Borel state space and unbounded costs. Systems and Control Letters, 1990, 15, 349-356.	1.3	30
53	A Laplace transform algorithm for the volume of a convex polytope. Journal of the ACM, 2001, 48, 1126-1140.	1.8	30
54	A Unified Framework for Solving a General Class of Conditional and Robust Set-Membership Estimation Problems. IEEE Transactions on Automatic Control, 2014, 59, 2897-2909.	3.6	30

#	Article	IF	CITATIONS
55	Measuring decision flexibility in production planning. IEEE Transactions on Automatic Control, 1985, 30, 447-452.	3.6	29
56	Average cost Markov Decision Processes: Optimality conditions. Journal of Mathematical Analysis and Applications, 1991, 158, 396-406.	0.5	29
57	On Counting Integral Points in a Convex Rational Polytope. Mathematics of Operations Research, 2003, 28, 853-870.	0.8	29
58	New approximations for the cone of copositive matrices and its dual. Mathematical Programming, 2014, 144, 265-276.	1.6	29
59	Minimizing the sum of many rational functions. Mathematical Programming Computation, 2016, 8, 83-111.	3.2	28
60	SDP vs. LP Relaxations for the Moment Approach in Some Performance Evaluation Problems. Stochastic Models, 2004, 20, 439-456.	0.3	27
61	Moments and sums of squares for polynomial optimization and related problems. Journal of Global Optimization, 2009, 45, 39-61.	1.1	27
62	Inverse optimal control with polynomial optimization., 2014,,.		27
63	An on-line procedure in discounted infinite-horizon stochastic optimal control. Journal of Optimization Theory and Applications, 1986, 50, 61-67.	0.8	25
64	Robust hierarchical production planning under uncertainty. Annals of Operations Research, 1990, 26, 73-87.	2.6	25
65	Integration and homogeneous functions. Proceedings of the American Mathematical Society, 1999, 127, 813-818.	0.4	25
66	Robust global optimization with polynomials. Mathematical Programming, 2006, 107, 275-293.	1.6	25
67	A "Joint+Marginal―Approach to Parametric Polynomial Optimization. SIAM Journal on Optimization, 2010, 20, 1995-2022.	1.2	25
68	A MAX-CUT formulation of 0/1 programs. Operations Research Letters, 2016, 44, 158-164.	0.5	25
69	Policy Iteration for Average Cost Markov Control Processes on Borel Spaces. Acta Applicandae Mathematicae, 1997, 47, 125-154.	0.5	24
70	Fatou's Lemma and Lebesgue's convergence theorem for measures. Journal of Applied Mathematics and Stochastic Analysis, 2000, 13, 137-146.	0.3	24
71	Moment matrices, border bases and real radical computation. Journal of Symbolic Computation, 2013, 51, 63-85.	0.5	24
72	On Polynomial Optimization Over Non-compact Semi-algebraic Sets. Journal of Optimization Theory and Applications, 2014, 163, 707-718.	0.8	24

#	Article	IF	Citations
73	Linear Programming and Average Optimality of Markov Control Processes on Borel Spacesâ€"Unbounded Costs. SIAM Journal on Control and Optimization, 1994, 32, 480-500.	1.1	23
74	Optimisation globale et théorie des moments. Comptes Rendus Mathematique, 2000, 331, 929-934.	0.5	23
75	LMIs for constrained polynomial interpolation with application in trajectory planning. Systems and Control Letters, 2006, 55, 473-477.	1.3	23
76	The empirical Christoffel function with applications in data analysis. Advances in Computational Mathematics, 2019, 45, 1439-1468.	0.8	23
77	Ergodic Theorems and Ergodic Decomposition for Markov Chains. Acta Applicandae Mathematicae, 1998, 54, 99-119.	0.5	20
78	Nonlinear optimal control synthesis via occupation measures. , 2008, , .		20
79	Semidefinite programming for min–max problems and games. Mathematical Programming, 2012, 131, 305-332.	1.6	20
80	Invariant probabilities for Markov chains on a metric space. Statistics and Probability Letters, 1997, 34, 259-265.	0.4	19
81	Positivity and Optimization for Semi-Algebraic Functions. SIAM Journal on Optimization, 2010, 20, 3364-3383.	1.2	19
82	A globally convergent algorithm for exact penalty functions. European Journal of Operational Research, 1981, 7, 389-395.	3.5	18
83	Strong 1-optimal stationary policies in denumerable Markov decision processes. Systems and Control Letters, 1988, 11, 65-71.	1.3	18
84	Conditions for existence of average and Blackwell optimal stationary policies in denumerable Markov decision processes. Journal of Mathematical Analysis and Applications, 1988, 136, 479-489.	0.5	18
85	Sufficient conditions for a real polynomial to be a sum of squares. Archiv Der Mathematik, 2007, 89, 390-398.	0.3	18
86	A forecast horizon and a stopping rule for general Markov decision processes. Journal of Mathematical Analysis and Applications, 1988, 132, 388-400.	0.5	17
87	Denumerable state nonhomogeneous Markov decision processes. Journal of Mathematical Analysis and Applications, 1990, 153, 64-77.	0.5	17
88	An iterative procedure for lot streaming in job-shop scheduling. Computers and Industrial Engineering, 1993, 25, 231-234.	3.4	17
89	Introduction to Semidefinite, Conic and Polynomial Optimization. Profiles in Operations Research, 2012, , 1-22.	0.3	17
90	A formula for singular perturbations of Markov chains. Journal of Applied Probability, 1994, 31, 829-833.	0.4	16

#	Article	IF	CITATIONS
91	Measures and LMIs for Impulsive Nonlinear Optimal Control. IEEE Transactions on Automatic Control, 2014, 59, 1374-1379.	3.6	16
92	Tractable approximations of sets defined with quantifiers. Mathematical Programming, 2015, 151, 507-527.	1.6	16
93	Linear Conic Optimization for Inverse Optimal Control. SIAM Journal on Control and Optimization, 2016, 54, 1798-1825.	1.1	16
94	A formula for singular perturbations of Markov chains. Journal of Applied Probability, 1994, 31, 829-833.	0.4	15
95	Sample-path average optimality for Markov control processes. IEEE Transactions on Automatic Control, 1999, 44, 1966-1971.	3.6	15
96	Representation of nonnegative convex polynomials. Archiv Der Mathematik, 2008, 91, 126-130.	0.3	15
97	Discrete-time stochastic optimal control via occupation measures and moment relaxations., 2009,,.		15
98	The $\#$ The K -moment problem for continuous linear functionals. Transactions of the American Mathematical Society, 2012, 365, 2489-2504.	0.5	15
99	A generalization of Löwner-John's ellipsoid theorem. Mathematical Programming, 2015, 152, 559-591.	1.6	15
100	Semidefinite Approximations of Projections and Polynomial Images of SemiAlgebraic Sets. SIAM Journal on Optimization, 2015, 25, 2143-2164.	1.2	15
101	The fundamental matrix of singularly perturbed Markov chains. Advances in Applied Probability, 1999, 31, 679-697.	0.4	15
102	Infinite horizon nonstationary stochastic optimal control problem: A planning horizon result. IEEE Transactions on Automatic Control, 1984, 29, 836-837.	3.6	14
103	Linear Programming Approximations for Markov Control Processes in Metric Spaces. Acta Applicandae Mathematicae, 1998, 51, 123-139.	0.5	14
104	Sum of Squares Approximation of Polynomials, Nonnegative on a Real Algebraic Set. SIAM Journal on Optimization, 2005, 16, 610-628.	1.2	14
105	Min-max and robust polynomial optimization. Journal of Global Optimization, 2011, 51, 1-10.	1.1	14
106	Modern Optimization Modelling Techniques. , 2012, , .		14
107	Convex underestimators of polynomials. Journal of Global Optimization, 2013, 56, 1-25.	1.1	14
108	Solving a class of multivariate integration problems via Laplace techniques. Applicationes Mathematicae, 2001, 28, 391-405.	0.1	14

#	Article	IF	CITATIONS
109	The fundamental matrix of singularly perturbed Markov chains. Advances in Applied Probability, 1999, 31, 679-697.	0.4	13
110	Further criteria for positive Harris recurrence of Markov chains. Proceedings of the American Mathematical Society, 2000, 129, 1521-1524.	0.4	13
111	The Integer Hull of a Convex Rational Polytope. Discrete and Computational Geometry, 2004, 32, 129-139.	0.4	13
112	Nonlinear optimal control: approximations via moments and LMI-relaxations. , 0, , .		13
113	A prolongation–projection algorithm for computing the finite real variety of an ideal. Theoretical Computer Science, 2009, 410, 2685-2700.	0.5	13
114	On convex optimization without convex representation. Optimization Letters, 2011, 5, 549-556.	0.9	13
115	Inverse Polynomial Optimization. Mathematics of Operations Research, 2013, 38, 418-436.	0.8	13
116	Convergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems. SIAM Journal on Optimization, 2016, 26, 753-780.	1.2	13
117	A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control and Related Fields, 2020, 10, 113-140.	0.6	13
118	Algebraic–exponential Data Recovery from Moments. Discrete and Computational Geometry, 2015, 54, 993-1012.	0.4	12
119	Optimization as motion selection principle in robot action. Communications of the ACM, 2015, 58, 64-74.	3.3	12
120	Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm. Journal of Mathematical Imaging and Vision, 2015, 53, 42-60.	0.8	12
121	Bound-Constrained Polynomial Optimization Using Only Elementary Calculations. Mathematics of Operations Research, 2017, 42, 834-853.	0.8	12
122	Detecting planning horizons in deterministic infinite horizon optimal control. IEEE Transactions on Automatic Control, 1986, 31, 70-72.	3.6	11
123	Consistency of a linear system of inequalities. Journal of Optimization Theory and Applications, 1986, 49, 177-179.	0.8	11
124	Value Iteration and Rolling Plans for Markov Control Processes with Unbounded Rewards. Journal of Mathematical Analysis and Applications, 1993, 177, 38-55.	0.5	11
125	Average Optimal Stationary Policies and Linear Programming in Countable Space Markov Decision Processes. Journal of Mathematical Analysis and Applications, 1994, 183, 233-249.	0.5	11
126	Invariant probabilities for Feller-Markov chains. Journal of Applied Mathematics and Stochastic Analysis, 1995, 8, 341-345.	0.3	11

#	Article	IF	CITATIONS
127	A Farkas lemma Without A Standard Closure Condition. SIAM Journal on Control and Optimization, 1997, 35, 265-272.	1.1	11
128	The Multi-Dimensional Version of $\langle i \rangle \hat{a} \ll \sup \langle sup \rangle \langle sup \rangle \ll sup \rangle \langle sup \rangle su$	0.2	11
129	The Multi-Dimensional Version of " i 2½ b a x p dx. American Mathematical Monthly, 2001, 108, 151.	0.2	11
130	Mathematical Properties of Optimization Problems Defined by Positively Homogeneous Functions. Journal of Optimization Theory and Applications, 2002, 112, 31-52.	0.8	11
131	Bounding the support of a measure from its marginal moments. Proceedings of the American Mathematical Society, 2011, 139, 3375-3375.	0.4	11
132	An algorithm for semi-infinite polynomial optimization. Top, 2012, 20, 119-129.	1.1	11
133	Optimality in robot motion. Communications of the ACM, 2014, 57, 82-89.	3.3	11
134	Level Sets and NonGaussian Integrals of Positively Homogeneous Functions. International Game Theory Review, 2015, 17, 1540001.	0.3	11
135	The Linear Programming Approach. Profiles in Operations Research, 2002, , 377-407.	0.3	11
136	Approximating regions of attraction of a sparse polynomial differential system. IFAC-PapersOnLine, 2020, 53, 3266-3271.	0.5	11
137	Simulated annealing, random search, multistart or SAD?. Systems and Control Letters, 1987, 8, 297-301.	1.3	10
138	A Lagrangian Relaxation View of Linear and Semidefinite Hierarchies. SIAM Journal on Optimization, 2013, 23, 1742-1756.	1.2	10
139	Approximating Pareto curves using semidefinite relaxations. Operations Research Letters, 2014, 42, 432-437.	0.5	10
140	Semi-algebraic Approximation Using Christoffel–Darboux Kernel. Constructive Approximation, 2021, 54, 391-429.	1.8	10
141	Polynomials with All Zeros Real and in a Prescribed Interval. Journal of Algebraic Combinatorics, 2002, 16, 231-237.	0.4	9
142	An Alternative Algorithm for Counting Lattice Points in a Convex Polytope. Mathematics of Operations Research, 2005, 30, 597-614.	0.8	9
143	Measures with zeros in the inverse of their moment matrix. Annals of Probability, 2008, 36, .	0.8	9
144	Aggregate model and decomposition method for mid-term production planning. International Journal of Production Research, 1983, 21, 835-843.	4.9	8

#	Article	IF	CITATIONS
145	A complete characterization of reachable sets for constrained linear time-varying systems. IEEE Transactions on Automatic Control, 1987, 32, 836-838.	3.6	8
146	Reachable and controllable sets for two-dimensional, linear, discrete-time systems. Journal of Optimization Theory and Applications, 1991, 70, 583-595.	0.8	8
147	Linear programming formulation of MDPs in countable state space: The multichain case. Zeitschrift Fuer Operations-Research, Serie B: Praxis, 1994, 40, 91-108.	0.3	8
148	Weak conditions for average optimality in Markov control processes. Systems and Control Letters, 1994, 22, 287-291.	1.3	8
149	Tight bounds for the trace of a matrix product. IEEE Transactions on Automatic Control, 1997, 42, 578-581.	3.6	8
150	Integer programming, Barvinok's counting algorithm and Gomory relaxations. Operations Research Letters, 2004, 32, 133-137.	0.5	8
151	Moment LMI approach to LTV impulsive control. , 2013, , .		8
152	Mean Squared Error Minimization for Inverse Moment Problems. Applied Mathematics and Optimization, 2014, 70, 83-110.	0.8	8
153	Computing Gaussian & Computing	0.4	8
154	Computation of Chebyshev Polynomials for Union of Intervals. Computational Methods and Function Theory, 2019, 19, 625-641.	0.8	8
155	Simple formula for integration of polynomials on a simplex. BIT Numerical Mathematics, 2021, 61, 523-533.	1.0	8
156	Average Optimality in Markov Control Processes via Discounted-Cost Problems and Linear Programming. SIAM Journal on Control and Optimization, 1996, 34, 295-310.	1.1	7
157	A Quick Proof for the Volume of <i>n</i> -Balls. American Mathematical Monthly, 2001, 108, 768-769.	0.2	7
158	On the existence of a quasistationary measure for a Markov chain. Annals of Probability, 2001, 29, 437.	0.8	7
159	A discrete Farkas lemma. Discrete Optimization, 2004, 1, 67-75.	0.6	7
160	Hierarchical scheduling for decision support. Journal of Intelligent Manufacturing, 2005, 16, 235-242.	4.4	7
161	The truncated K-moment problem for closure of open sets. Journal of Functional Analysis, 2012, 263, 3604-3616.	0.7	7
162	Analytic perturbation of generalized inverses. Linear Algebra and Its Applications, 2013, 438, 1793-1813.	0.4	7

#	Article	IF	Citations
163	Connecting optimization with spectral analysis of tri-diagonal matrices. Mathematical Programming, 2021, 190, 795-809.	1.6	7
164	Exact formula for sensitivity analysis of Markov chains. Journal of Optimization Theory and Applications, 1991, 71, 407-413.	0.8	6
165	Detecting optimal and non-optimal actions in average-cost Markov decision processes. Journal of Applied Probability, 1994, 31, 979-990.	0.4	6
166	A new Farkas lemma for positive semidefinite matrices. IEEE Transactions on Automatic Control, 1995, 40, 1131-1133.	3.6	6
167	Existence and uniqueness of an invariant probability for a class of Feller Markov chains. Journal of Theoretical Probability, 1996, 9, 595-612.	0.4	6
168	On the setwise convergence of sequences of measures. Journal of Applied Mathematics and Stochastic Analysis, 1997, 10, 131-136.	0.3	6
169	Existence and Uniqueness of Fixed Points for Markov Operators and Markov Processes. Proceedings of the London Mathematical Society, 1998, 76, 711-736.	0.6	6
170	Pythagoras' Theorem for Areas. American Mathematical Monthly, 2001, 108, 549-551.	0.2	6
171	Generating functions and duality for integer programs. Discrete Optimization, 2004, 1, 167-187.	0.6	6
172	Certificates of convexity for basic semi-algebraic sets. Applied Mathematics Letters, 2010, 23, 912-916.	1.5	6
173	Borel measures with a density on a compact semi-algebraic set. Archiv Der Mathematik, 2013, 101, 361-371.	0.3	6
174	Recovering an Homogeneous Polynomial from Moments of Its Level Set. Discrete and Computational Geometry, 2013, 50, 673-678.	0.4	6
175	Representation of Chance-Constraints With Strong Asymptotic Guarantees., 2017, 1, 50-55.		6
176	Why the logarithmic barrier function in convex and linear programming?. Operations Research Letters, 2000, 27, 149-152.	0.5	5
177	Analytic perturbation of Sylvester matrix equations. IEEE Transactions on Automatic Control, 2002, 47, 1116-1119.	3.6	5
178	Solving the knapsack problem via -transform. Operations Research Letters, 2002, 30, 394-400.	0.5	5
179	Lower bounds on the global minimum of a polynomial. Computational Optimization and Applications, 2014, 57, 387-402.	0.9	5
180	Volume of slices and sections of the simplex in closed form. Optimization Letters, 2015, 9, 1263-1269.	0.9	5

#	Article	IF	CITATIONS
181	Convex Optimization and Parsimony of \$L_p\$-balls Representation. SIAM Journal on Optimization, 2016, 26, 247-273.	1.2	5
182	In SDP Relaxations, Inaccurate Solvers Do Robust Optimization. SIAM Journal on Optimization, 2019, 29, 2128-2145.	1.2	5
183	Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?. Advances in Computational Mathematics, 2019, 45, 1401-1437.	0.8	5
184	Distributionally robust polynomial chance-constraints under mixture ambiguity sets. Mathematical Programming, 2021, 185, 409-453.	1.6	5
185	The moment-SOS hierarchy and the Christoffel–Darboux kernel. Optimization Letters, 2021, 15, 1835-1845.	0.9	5
186	Pythagoras' Theorem for Areas. American Mathematical Monthly, 2001, 108, 549.	0.2	5
187	A property of certain multistage linear programs and some applications. Journal of Optimization Theory and Applications, 1981, 34, 197-205.	0.8	4
188	On the open-loop solution of linear stochastic optimal control problems. IEEE Transactions on Automatic Control, 1984, 29, 562-564.	3.6	4
189	Linear programming with positive semi-definite matrices. Mathematical Problems in Engineering, 1996, 2, 499-522.	0.6	4
190	Weak convergences of probability measures: A uniform principle. Proceedings of the American Mathematical Society, 1998, 126, 3089-3096.	0.4	4
191	SOS approximation of polynomials nonnegative on an algebraic set. , 0, , .		4
192	Approximating integrals of multivariate exponentials: A moment approach. Operations Research Letters, 2008, 36, 205-210.	0.5	4
193	Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 10887-10892.	0.4	4
194	A "jointÂ+Âmarginal―heuristic for 0/1 programs. Journal of Global Optimization, 2012, 54, 729-744.	1.1	4
195	Semidefinite Approximations of the Polynomial Abscissa. SIAM Journal on Control and Optimization, 2016, 54, 1633-1656.	1.1	4
196	Volume of Sublevel Sets of Homogeneous Polynomials. SIAM Journal on Applied Algebra and Geometry, 2019, 3, 372-389.	0.9	4
197	Homogeneous polynomials and spurious local minima on the unit sphere. Optimization Letters, 0, , .	0.9	4
198	Moments and convex optimization for analysis and control of nonlinear PDEs. Handbook of Numerical Analysis, 2022, , 339-366.	0.9	4

#	Article	IF	Citations
199	Existence of bounded invariant probability densities for Markov chains. Statistics and Probability Letters, 1996, 28, 359-366.	0.4	3
200	La valeur optimale des programmes entiers. Comptes Rendus Mathematique, 2002, 335, 863-866.	0.1	3
201	Positivity and Optimization: Beyond Polynomials. Profiles in Operations Research, 2012, , 407-434.	0.3	3
202	The existence of Gaussian cubature formulas. Journal of Approximation Theory, 2012, 164, 572-585.	0.5	3
203	Exploiting Sparsity for Semi-Algebraic Set Volume Computation. Foundations of Computational Mathematics, 0, , 1.	1.5	3
204	Piecewise-Linear Motion Planning amidst Static, Moving, or Morphing Obstacles. , 2021, , .		3
205	Duality and a Farkas lemma for integer programs. Springer Optimization and Its Applications, 2009, , 15-39.	0.6	3
206	Computing the Hausdorff Boundary Measure of Semialgebraic Sets. SIAM Journal on Applied Algebra and Geometry, 2020, 4, 441-469.	0.9	3
207	Invariant Probabilities with Geometric Tail. Probability in the Engineering and Informational Sciences, 1996, 10, 213-221.	0.6	2
208	Characterizing Polynomials With Roots in a Semialgebraic Set. IEEE Transactions on Automatic Control, 2004, 49, 727-731.	3.6	2
209	Computing the real variety of an ideal. , 2008, , .		2
210	Inverse polynomial optimization., 2011,,.		2
211	Lebesgue decomposition in action via semidefinite relaxations. Advances in Computational Mathematics, 2016, 42, 1129-1148.	0.8	2
212	Determining projection constants of univariate polynomial spaces. Journal of Approximation Theory, 2018, 235, 74-91.	0.5	2
213	Semidefinite Relaxations for Lebesgue and Gaussian Measures of Unions of Basic Semialgebraic Sets. Mathematics of Operations Research, 2019, 44, 1477-1493.	0.8	2
214	Dual optimal design and the Christoffel–Darboux polynomial. Optimization Letters, 2021, 15, 3-8.	0.9	2
215	A Quick Proof for the Volume of n-Balls. American Mathematical Monthly, 2001, 108, 768.	0.2	2
216	Structured Function Systems and Applications. Oberwolfach Reports, 2013, 10, 579-655.	0.0	2

#	Article	IF	CITATIONS
217	Consistency of a linear system of inequalities. Journal of Optimization Theory and Applications, 1987, 53, 139-139.	0.8	1
218	Existence of closed-loop policies for constrained discrete-time linear systems with bounded disturbances. Journal of Optimization Theory and Applications, 1988, 58, 351-358.	0.8	1
219	A theorem of the alternative in Banach lattices. Proceedings of the American Mathematical Society, 1998, 126, 189-194.	0.4	1
220	Correction to "An extension of the Vitali-Hahn-Saks theorem― Proceedings of the American Mathematical Society, 1998, 126, 949-949.	0.4	1
221	Analytic perturbation of Sylvester and Lyapunov matrix equations. , 0, , .		1
222	Bounds on measures satisfying moment conditions. Annals of Applied Probability, 2004, 14, 1603.	0.6	1
223	A SUM OF SQUARES APPROXIMATION OF NONNEGATIVE POLYNOMIALS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 441-444.	0.4	1
224	Semidefinite programming for gradient and Hessian computation in maximum entropy estimation. , 2007, , .		1
225	The K-moment problem with densities. Mathematical Programming, 2009, 116, 321-341.	1.6	1
226	Convex underestimators of polynomials. , 2011, , .		1
227	A "Joint+Marginal―Approach in Optimization. Profiles in Operations Research, 2012, , 271-295.	0.3	1
228	A generalization of the Löwner-John's ellipsoid theorem. , 2013, , .		1
229	Nonnegative forms with sublevel sets of minimal volume. Mathematical Programming, 2020, , 1.	1.6	1
230	Simple Explicit Formula for Counting Lattice Points of Polyhedra., 2007,, 367-381.		1
231	A moment approach to analyze zeros of triangular polynomial sets. Transactions of the American Mathematical Society, 2005, 358, 1403-1420.	0.5	1
232	Quasi-Feller Markov chains. Journal of Applied Mathematics and Stochastic Analysis, 2000, 13, 15-24.	0.3	1
233	Convergent SDP-Relaxations for Polynomial Optimization with Sparsity. Lecture Notes in Computer Science, 2006, , 263-272.	1.0	1
234	Graph Recovery from Incomplete Moment Information. Constructive Approximation, 0, , 1.	1.8	1

#	Article	IF	CITATIONS
235	A mixed forward-backward dynamic programming method using parallel computation. Journal of Optimization Theory and Applications, 1985, 45, 165-168.	0.8	O
236	A Lyapunov Criterion for Invariant Probabilities with Geometric Tail. Probability in the Engineering and Informational Sciences, 1998, 12, 387-391.	0.6	0
237	L p -Norms, Log-Barriers and Cramer Transform in Optimization. Set-Valued and Variational Analysis, 2010, 18, 513-530.	0.5	O
238	A & amp; #x201C; joint+marginal & amp; #x201D; algorithm for polynomial optimization., 2010,,.		0
239	Corrigendum to "The truncated K-moment problem for closure of open sets―[J. Funct. Anal. 263 (11) (2012) 3604–3616]. Journal of Functional Analysis, 2013, 265, 300-302.	0.7	0
240	A Lagrangian relaxation view of linear and semidefinite hierarchies. , 2013, , .		0
241	The 2013 Newton Institute Programme on polynomial optimization. Mathematical Programming, 2015, 151, 375-377.	1.6	0
242	Volume of sub-level sets of polynomials. , 2019, , .		0
243	Minimizing Rational Functions: A Hierarchy of Approximations via Pushforward Measures. SIAM Journal on Optimization, 2021, 31, 2285-2306.	1.2	0
244	On the probabilistic multichain Poisson equation. Applicationes Mathematicae, 2001, 28, 225-243.	0.1	0
245	Moments and Legendre-Fourier Series for Measures Supported on Curves. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 0, , .	0.5	0
246	Optimization on the Euclidean Unit Sphere. SIAM Journal on Optimization, 2022, 32, 1430-1445.	1.2	0