List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7593102/publications.pdf Version: 2024-02-01

		29994	30010
220	11,760	54	103
papers	citations	h-index	g-index
225	225	225	12476
all docs	docs citations	times ranked	citing authors

II MAN KIM

#	Article	IF	CITATIONS
1	Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature, 2000, 408, 449-453.	13.7	832
2	Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A: General, 2007, 327, 261-269.	2.2	733
3	Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chemistry of Materials, 2000, 12, 2068-2069.	3.2	633
4	Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 2020, 11, 1-13.	0.9	523
5	Ion Exchange and Thermal Stability of MCM-41. The Journal of Physical Chemistry, 1995, 99, 16742-16747.	2.9	307
6	Cu–Mn mixed oxides for low temperature NO reduction with NH3. Catalysis Today, 2006, 111, 236-241.	2.2	238
7	Energetically Favored Formation of MCM-48 from Cationicâ~'Neutral Surfactant Mixtures. Journal of Physical Chemistry B, 1999, 103, 7435-7440.	1.2	227
8	Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. Journal of the Chemical Society Chemical Communications, 1995, , 711.	2.0	220
9	Structural Design of Mesoporous Silica by Micelle-Packing Control Using Blends of Amphiphilic Block Copolymers. Journal of Physical Chemistry B, 2002, 106, 2552-2558.	1.2	219
10	Synthesis of MCM-48 single crystals. Chemical Communications, 1998, , 259-260.	2.2	213
11	Metal–Organic Framework@Microporous Organic Network: Hydrophobic Adsorbents with a Crystalline Inner Porosity. Journal of the American Chemical Society, 2014, 136, 6786-6789.	6.6	200
12	Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 19885-19911.	5.2	200
13	Ordered mesoporous carbons (OMC) as supports of electrocatalysts for direct methanol fuel cells (DMFC): Effect of carbon precursors of OMC on DMFC performances. Electrochimica Acta, 2006, 52, 1618-1626.	2.6	198
14	Microporous Organic Network Hollow Spheres: Useful Templates for Nanoparticulate Co ₃ O ₄ Hollow Oxidation Catalysts. Journal of the American Chemical Society, 2013, 135, 19115-19118.	6.6	188
15	Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers. Chemical Communications, 2000, , 1159-1160.	2.2	171
16	Reversible replication between ordered mesoporous silica and mesoporous carbon. Chemical Communications, 2002, , 1944-1945.	2.2	170
17	Applications of Voltammetry in Lithium Ion Battery Research. Journal of Electrochemical Science and Technology, 2020, 11, 14-25.	0.9	166
18	Three-Dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography. Journal of Physical Chemistry B, 2002, 106, 3118-3123.	1.2	160

#	Article	IF	CITATIONS
19	Improvement of Hydrothermal Stability of Mesoporous Silica Using Salts:  Reinvestigation for Time-Dependent Effects. Journal of Physical Chemistry B, 1999, 103, 6200-6205.	1.2	156
20	Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption. Langmuir, 1999, 15, 5279-5284.	1.6	150
21	EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2018, 67, 210-218.	2.9	143
22	Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries. Journal of Power Sources, 2015, 275, 351-361.	4.0	133
23	Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides. Catalysis Today, 2012, 185, 183-190.	2.2	127
24	Morphology-selective synthesis of mesoporous SBA-15 particles over micrometer, submicrometer and nanometer scales. Journal of Materials Chemistry, 2010, 20, 8483.	6.7	124
25	Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions. Electrochimica Acta, 2009, 54, 5746-5753.	2.6	123
26	Novel Mesoporous Silicates with Two-Dimensional Mesostructure Direction Using Rigid Bolaform Surfactants. Chemistry of Materials, 1999, 11, 2668-2672.	3.2	118
27	New Insight into the Reaction Mechanism for Exceptional Capacity of Ordered Mesoporous SnO ₂ Electrodes via Synchrotron-Based X-ray Analysis. Chemistry of Materials, 2014, 26, 6361-6370.	3.2	114
28	Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes. Nature Communications, 2016, 7, 11049.	5.8	112
29	Direct synthesis, characterization and catalytic application of SBA-15 containing heteropolyacid H3PW12O40. Journal of Molecular Catalysis A, 2005, 229, 199-205.	4.8	111
30	Characterization of High-Quality MCM-48 and SBA-1 Mesoporous Silicas. Chemistry of Materials, 1999, 11, 2568-2572.	3.2	103
31	Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. Carbon, 2008, 46, 2034-2045.	5.4	100
32	Optically Transparent, Single-Crystal-Like Oriented Mesoporous Silica Films and Plates. Journal of Physical Chemistry B, 1997, 101, 10610-10613.	1.2	99
33	A New Musselâ€Inspired Polydopamine Sensitizer for Dyeâ€5ensitized Solar Cells: Controlled Synthesis and Charge Transfer. Chemistry - A European Journal, 2012, 18, 14000-14007.	1.7	90
34	Rational Synthesis Pathway for Ordered Mesoporous Carbon with Controllable 30―to 100â€Angstrom Pores. Advanced Materials, 2008, 20, 757-762.	11.1	84
35	Highly Stable Mesoporous Metal Oxides Using Nano-Propping Hybrid Gemini Surfactants. Journal of the American Chemical Society, 2004, 126, 2310-2311.	6.6	82
36	Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan. Carbon, 2005, 43, 1868-1873.	5.4	81

#	Article	IF	CITATIONS
37	Solvent-free infiltration method for mesoporous SnO2 using mesoporous silica templates. Microporous and Mesoporous Materials, 2009, 120, 441-446.	2.2	80
38	Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbon via strong metal-support interaction. Journal of Materials Chemistry, 2009, 19, 5934.	6.7	76
39	Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. Microporous and Mesoporous Materials, 2000, 41, 119-127.	2.2	72
40	Synthesis of zeolite beta in fluoride media under microwave irradiation. Microporous and Mesoporous Materials, 2004, 68, 77-82.	2.2	71
41	One-step synthesis of ordered mesocomposites with non-ionic amphiphilic block copolymers: implications of isoelectric point, hydrolysis rate and fluoride. Chemical Communications, 2000, , 2437-2438.	2.2	69
42	Removal of uranium(VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. Journal of Radioanalytical and Nuclear Chemistry, 2010, 286, 129-133.	0.7	69
43	Synthesis of highly stable mesoporous aluminosilicates from commercially available zeolites and their application to the pyrolysis of woody biomass. Catalysis Today, 2008, 132, 68-74.	2.2	68
44	Novel MnOx Catalysts for NO Reduction at Low Temperature with Ammonia. Catalysis Letters, 2006, 106, 77-80.	1.4	67
45	Visible-Light Driven Photocatalytic Degradation of Organic Dyes over Ordered Mesoporous Cd _{<i>x</i>} Zn _{1–<i>x</i>} S Materials. Journal of Physical Chemistry C, 2017, 121, 5137-5144.	1.5	65
46	Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts. Renewable Energy, 2019, 144, 159-166.	4.3	65
47	Monitoring of the structure of siliceous mesoporous molecular sieves tailored using different synthesis conditions. Microporous Materials, 1997, 12, 93-106.	1.6	64
48	Highly reversible conversion-capacity of MnOx-loaded ordered mesoporous carbon nanorods for lithium-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 17870.	6.7	64
49	Exceptional Lithium Storage in a Co(OH) ₂ Anode: Hydride Formation. ACS Nano, 2018, 12, 2909-2921.	7.3	64
50	Unveiling the Genesis and Effectiveness of Negative Fading in Nanostructured Iron Oxide Anode Materials for Lithium-Ion Batteries. ACS Nano, 2022, 16, 631-642.	7.3	64
51	Photocatalytic CO2 conversion on highly ordered mesoporous materials: Comparisons of metal oxides and compound semiconductors. Applied Catalysis B: Environmental, 2018, 224, 594-601.	10.8	61
52	Preparation of stable mesoporous inorganic oxides via nano-replication technique. Catalysis Today, 2004, 93-95, 695-699.	2.2	59
53	Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReO _x /ZrO ₂ catalyst: zirconia and rhenium oxide as efficient dehydration promoters. Green Chemistry, 2018, 20, 1472-1483.	4.6	59
54	Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. Journal of Power Sources, 2016, 334, 154-161.	4.0	57

#	Article	lF	CITATIONS
55	Catalytic upgrading of oil fractions separated from food waste leachate. Bioresource Technology, 2011, 102, 3952-3957.	4.8	56
56	Systematic phase control of periodic mesoporous organosilicas using Gemini surfactants. Journal of Materials Chemistry, 2005, 15, 4711.	6.7	54
57	Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst. Chemical Communications, 2005, , 1462.	2.2	54
58	Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. Chemical Communications, 2009, , 650-652.	2.2	54
59	Probing the Additional Capacity and Reaction Mechanism of the RuO ₂ Anode in Lithium Rechargeable Batteries. ChemSusChem, 2015, 8, 2378-2384.	3.6	52
60	Mesoporous transition metal dichalcogenide ME ₂ (M = Mo, W; E = S, Se) with 2-D layered crystallinity as anode materials for lithium ion batteries. RSC Advances, 2016, 6, 14253-14260.	1.7	52
61	Preparation of nanosize Pt clusters using ion exchange of Pt(NH3) 4 2+ inside mesoporous channel of MCM-41. Catalysis Letters, 1996, 37, 29-33.	1.4	51
62	Removal of toluene using ozone at room temperature over mesoporous Mn/Al2O3 catalysts. Environmental Research, 2019, 172, 649-657.	3.7	51
63	Catalyst deactivation by carbon formation during CO hydrogenation to hydrocarbons on mesoporous Co3O4. Microporous and Mesoporous Materials, 2014, 188, 196-202.	2.2	50
64	Silver Nanowire–Conducting Polymer–ITO Hybrids for Flexible and Transparent Conductive Electrodes with Excellent Durability. ACS Applied Materials & Interfaces, 2015, 7, 15928-15934.	4.0	50
65	Discovering a Dualâ€Buffer Effect for Lithium Storage: Durable Nanostructured Ordered Mesoporous Co–Sn Intermetallic Electrodes. Advanced Functional Materials, 2016, 26, 2800-2808.	7.8	50
66	Application of polymer-modified nanoporous silica to adsorbents of uranyl ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 162-166.	2.3	48
67	Carbon-supported ultra-high loading Pt nanoparticle catalyst by controlled overgrowth of Pt: Improvement of Pt utilization leads to enhanced direct methanol fuel cell performance. International Journal of Hydrogen Energy, 2012, 37, 6880-6885.	3.8	45
68	Ordered mesoporous MCo2O4 (M = Cu, Zn and Ni) spinel catalysts with high catalytic performance for methane combustion. Journal of Molecular Catalysis A, 2017, 426, 68-74.	4.8	44
69	Indoor formaldehyde removal over CMK-3. Nanoscale Research Letters, 2012, 7, 7.	3.1	43
70	Two-stage catalyst system for selective catalytic reduction of NOx by NH3 at low temperatures. Applied Catalysis B: Environmental, 2006, 68, 21-27.	10.8	42
71	Pyrolysis of polypropylene over mesoporous MCM-48 material. Journal of Physics and Chemistry of Solids, 2008, 69, 1125-1128.	1.9	42
72	Benzene oxidation with ozone over MnO /SBA-15 catalysts. Catalysis Today, 2013, 204, 108-113.	2.2	42

JI MAN KIM

#	Article	IF	CITATIONS
73	A new route for obtaining Prussian blue nanoparticles. Materials Chemistry and Physics, 2008, 107, 6-8.	2.0	41
74	Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials. Journal of Materials Chemistry, 2009, 19, 6727.	6.7	41
75	Periodic Mesoporous Organosilicas Functionalized with Sulfonic Acid Group. Synthesis and Alkylation of Phenol. Chemistry Letters, 2003, 32, 650-651.	0.7	40
76	Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method: Effect of Mn precursors on NO reduction. Catalysis Today, 2012, 185, 290-295.	2.2	40
77	Dehydroxylation Route to Surface Modification of Mesoporous Silicas by Using Grignard Reagents. Angewandte Chemie - International Edition, 2004, 43, 3839-3842.	7.2	39
78	Enhancement of electrochemical stability and catalytic activity of Pt nanoparticles via strong metal-support interaction with sulfur-containing ordered mesoporous carbon. Catalysis Today, 2011, 164, 186-189.	2.2	39
79	Removal of Cu(II)-ion over amine-functionalized mesoporous silica materials. Journal of Industrial and Engineering Chemistry, 2011, 17, 504-509.	2.9	39
80	Preparation of functionalized nanoporous carbons for uranium loading. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 292-295.	2.3	38
81	<i>In Operando</i> Monitoring of the Pore Dynamics in Ordered Mesoporous Electrode Materials by Small Angle X-ray Scattering. ACS Nano, 2015, 9, 5470-5477.	7.3	38
82	In-situ hydrogenation of bio-oil/bio-oil phenolic compounds with secondary alcohols over a synthesized mesoporous Ni/CeO2 catalyst. Chemical Engineering Journal, 2020, 382, 122912.	6.6	38
83	Comparative study of bulk and nano-structured mesoporous SnO2 electrodes on the electrochemical performances for next generation Li rechargeable batteries. Journal of Power Sources, 2019, 413, 241-249.	4.0	37
84	Ex situ catalytic upgrading of lignocellulosic biomass components over vanadium contained H-MCM-41 catalysts. Catalysis Today, 2016, 265, 184-191.	2.2	36
85	Preparation of Highly Ordered Mesoporous TiO2 Materials with Crystalline Framework from Different Mesostructured Silica Templates via Nanoreplication. Chemistry Letters, 2008, 37, 140-141.	0.7	35
86	Design of a Highly Nanodispersed Pd–MgO/SiO ₂ Composite Catalyst with Multifunctional Activity for CH ₄ Reforming. ChemSusChem, 2012, 5, 1474-1481.	3.6	35
87	Catalytic pyrolysis of waste rice husk over mesoporous materials. Nanoscale Research Letters, 2012, 7, 18.	3.1	34
88	Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous α-Mn2O3. Powder Technology, 2011, 214, 458-462.	2.1	33
89	Application of Ordered Nanoporous Silica for Removal of Uranium Ions from Aqueous Solutions. Journal of Nanoscience and Nanotechnology, 2010, 10, 217-221.	0.9	32
90	Spontaneous Phase Separation Mediated Synthesis of 3D Mesoporous Carbon with Controllable Cage and Window Size. Advanced Materials, 2011, 23, 2357-2361.	11.1	32

#	Article	IF	CITATIONS
91	Cobalt Catalyst Heterogenized on SBA-15 forp-Xylene Oxidation. Chemistry Letters, 2002, 31, 212-213.	0.7	31
92	MALDI-TOF-MS analysis of small molecules using modified mesoporous material SBA-15 as assisted matrix. Journal of the American Society for Mass Spectrometry, 2009, 20, 2167-2173.	1.2	31
93	Anthraquinone Sulfonate Modified, Layered Double Hydroxide Nanosheets for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 8296-8299.	1.7	31
94	A novel and efficient route to diarylmethanes catalyzed by nickel(II) ion on nanoporous carbon. Tetrahedron Letters, 2005, 46, 2849-2852.	0.7	30
95	Highly Ordered Mesoporous $\hat{l}\pm$ -Mn2O3 for Catalytic Decomposition of H2O2 at Low Temperatures. Chemistry Letters, 2010, 39, 493-495.	0.7	30
96	Pd core-shell alloy catalysts for high-temperature polymer electrolyte membrane fuel cells: Effect of the core composition on the activity towards oxygen reduction reactions. Applied Catalysis A: General, 2018, 562, 250-257.	2.2	30
97	Simple and fast microwave-enhanced wet etching of SiC particles for electroless Ni-P plating. Surface and Coatings Technology, 2002, 161, 79-85.	2.2	29
98	Preparation and characterization of zeolite catalysts for etherification reaction. Catalysis Today, 2003, 87, 195-203.	2.2	29
99	Plasma Catalyst-Integrated System for Ammonia Production from H ₂ O and N ₂ at Atmospheric Pressure. ACS Energy Letters, 2021, 6, 3004-3010.	8.8	29
100	Rational design of ordered mesoporous carbon with controlled bimodal porosity via dual silica templating route. Chemical Communications, 2005, , 6035.	2.2	25
101	Preparation and application of chelating polymer–mesoporous carbon composite for copper-ion adsorption. Carbon, 2009, 47, 1043-1049.	5.4	25
102	Mesoporous molecular sieve with binary transition metal (Zr-Cr) oxide framework. Catalysis Today, 1997, 38, 221-226.	2.2	23
103	Selective Synthesis of 1-butene through Positional Isomerisation of 2-butene over Mesoporous Silica MCM-41. Catalysis Letters, 2007, 119, 179-184.	1.4	23
104	Synthesis of Nanoporous Material from Zeolite USY and Catalytic Application to Bio-Oil Conversion. Journal of Nanoscience and Nanotechnology, 2008, 8, 5439-5444.	0.9	23
105	Synthesis and characterization of Co–Fe Prussian blue nanoparticles within MCM-41. Materials Research Bulletin, 2009, 44, 78-81.	2.7	23
106	Nanotechnology enabled rechargeable Li–SO ₂ batteries: another approach towards post-lithium-ion battery systems. Energy and Environmental Science, 2015, 8, 3173-3180.	15.6	23
107	Reaction mechanism and additional lithium storage of mesoporous MnO2 anode in Li batteries. Journal of Energy Chemistry, 2021, 53, 276-284.	7.1	23
108	The effects of nanostructures on lithium storage behavior in Mn2O3 anodes for next-generation lithium-ion batteries. Journal of Power Sources, 2021, 493, 229682.	4.0	23

#	Article	IF	CITATIONS
109	Direct synthesis of ordered mesoporous materials constructed with polymer–silica hybrid frameworks. Chemical Communications, 2004, , 1524-1525.	2.2	22
110	Redox-buffer effect of Fe2+ ions on the selective olefin/paraffin separation and hydrogen tolerance of a Cu+-based mesoporous adsorbent. Journal of Materials Chemistry A, 2013, 1, 6653.	5.2	22
111	Selective polymerization of polypyrrole in silica mesopores using an in situ generated oxidizing agent on a silica surface. Chemical Communications, 2010, 46, 6566.	2.2	21
112	In situ- generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles. Nanoscale Research Letters, 2012, 7, 461.	3.1	21
113	Catalytic ozone oxidation of benzene at low temperature over MnOx/Al-SBA-16 catalyst. Nanoscale Research Letters, 2012, 7, 14.	3.1	21
114	Ordered mesoporous Cu-Mn-Ce ternary metal oxide catalysts for low temperature water-gas shift reaction. Catalysis Today, 2018, 307, 237-242.	2.2	20
115	Mesocrystal engineering using non-bonded interaction to obtain optically transparent mesoporous silica films and plates with uniform orientation. Microporous and Mesoporous Materials, 1998, 21, 235-243.	2.2	19
116	Simultaneous removal of particulates and NO by the catalytic bag filter containing MnOx catalysts. Korean Journal of Chemical Engineering, 2009, 26, 86-89.	1.2	19
117	Enhancement of the interfacial reaction on mesoporous RuO2 for next generation Li batteries. Journal of Power Sources, 2018, 396, 749-753.	4.0	18
118	Synthesis and catalysis of nanometer-sized bimodal mesoporous aluminosilicate materials. Catalysis Today, 2004, 93-95, 615-618.	2.2	17
119	Adsorption and conversion of various hydrocarbons on monolithic hydrocarbon adsorber. Journal of Colloid and Interface Science, 2004, 274, 538-542.	5.0	17
120	Microwave Synthesis of Metallosilicate Zeolites with Fibrous Morphology. Journal of Nanoscience and Nanotechnology, 2006, 6, 1786-1791.	0.9	17
121	Room-temperature CO oxidation over a highly ordered mesoporous RuO2 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 87-99.	0.8	17
122	Nanostructural Uniformity of Ordered Mesoporous Materials: Governing Lithium Storage Behaviors. Small, 2018, 14, e1702985.	5.2	17
123	Improved electrochemical performance of ordered mesoporous carbon by incorporating macropores for Li‒O2 battery cathode. Carbon, 2018, 133, 118-126.	5.4	17
124	Ultrafast production of ordered mesoporous carbons via microwave irradiation. Carbon, 2007, 45, 2851-2854.	5.4	16
125	Frictional Performances of Activated Carbon and Carbon Blacks as Lubricant Additives. Tribology Transactions, 2008, 52, 133-137.	1.1	16
126	Development of stable electrochemical catalysts using ordered mesoporous carbon/silicon carbide nanocomposites. International Journal of Hydrogen Energy, 2015, 40, 12352-12361.	3.8	16

#	Article	IF	CITATIONS
127	Evidence for the Coexistence of Polysulfide and Conversion Reactions in the Lithium Storage Mechanism of MoS ₂ Anode Material. Chemistry of Materials, 2021, 33, 1935-1945.	3.2	16
128	Synthesis of Ordered Mesoporous Manganese Oxides with Various Oxidation States. Journal of Nanoscience and Nanotechnology, 2015, 15, 2441-2445.	0.9	15
129	Water treatment by polysulfone membrane modified with tetrahydrofuran and water pressure. Macromolecular Research, 2016, 24, 1020-1023.	1.0	15
130	Sol-gel synthesis of methyl-modified mesoporous materials with dual porosity. Journal of Non-Crystalline Solids, 2005, 351, 777-783.	1.5	14
131	SYNTHESIS OF MESOPOROUS IRON OXIDE NANOPARTICLES FROM MESOPOROUS SILICA TEMPLATE VIA NANO-REPLICATION. Functional Materials Letters, 2008, 01, 151-154.	0.7	14
132	Periodic Mesoporous Organosilica with a Hexagonally Pillared Lamellar Structure. Journal of the American Chemical Society, 2009, 131, 14249-14251.	6.6	14
133	Catalytic Oxidation of Benzene with Ozone Over Nanoporous Mn/MCM-48 Catalyst. Journal of Nanoscience and Nanotechnology, 2012, 12, 5942-5946.	0.9	14
134	Highly ordered crystalline mesoporous metal oxides for hydrogen peroxide decomposition. Journal of Porous Materials, 2013, 20, 989-995.	1.3	13
135	Synthesis of high-energy-density fuel over mesoporous aluminosilicate catalysts. Catalysis Today, 2018, 303, 71-76.	2.2	13
136	Pt nanoparticles encapsulated in CeO2 over-layers synthesized by controlled reductive treatment to suppress CH4 formation in high-temperature water-gas shift reaction. Journal of Catalysis, 2021, 395, 246-257.	3.1	12
137	Preparation of polypyrrole-incorporated mesoporous carbon-based composites for confinement of Eu(iii) within mesopores. Journal of Materials Chemistry, 2010, 20, 4663.	6.7	11
138	Synthesis of highly ordered mesoporous CeO2 and low temperature CO oxidation over Pd/mesoporous CeO2. Research on Chemical Intermediates, 2011, 37, 1181-1192.	1.3	11
139	Catalytic Oxidation of Benzene with Ozone Over Mn/KIT-6. Journal of Nanoscience and Nanotechnology, 2013, 13, 423-426.	0.9	11
140	Highly ordered mesoporous CdxZn1â^'xSe ternary compound semiconductors with controlled band gap energies. New Journal of Chemistry, 2014, 38, 3729-3736.	1.4	11
141	Hydroformylation of Mixed Octenes Using Rhodium–Bulky Phosphonite Complexes with Excellent Catalytic Activity and Stability. Chemistry Letters, 2004, 33, 174-175.	0.7	10
142	Highly efficient silver patterning without photo-resist using simple silver precursors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 117, 11-16.	1.7	10
143	Preparation and application of chelating polymer-mesoporous silica composite for Europium-ion adsorption. Macromolecular Research, 2011, 19, 421-426.	1.0	10
144	Mesoporous Inverse Opal TiO ₂ Film as Light Scattering Layer for Dye-Sensitized Solar Cell. Journal of Nanoscience and Nanotechnology, 2012, 12, 815-821.	0.9	10

#	Article	IF	CITATIONS
145	Highly Ordered Mesoporous WO ₃ with Excellent Catalytic Performance and Reusability for Deep Oxidative Desulfurization. Nano, 2015, 10, 1550075.	0.5	10
146	Synthesis of alkali promoted mesoporous, nanocrystalline Pd/TiO2 catalyst for water gas shift reaction. Catalysis Today, 2016, 265, 45-51.	2.2	10
147	Direct observation of pseudocapacitive sodium storage behavior in molybdenum dioxide anodes. Journal of Power Sources, 2018, 397, 113-123.	4.0	10
148	Preparation of Nanoporous PdIrZn Alloy Catalyst by Dissolving Excess ZnO for Cathode of High- Temperature Polymer Electrolyte Membrane Fuel Cells. Energies, 2019, 12, 4155.	1.6	10
149	Unveiling the role of micropores in porous carbon for Li–S batteries using <i>operando</i> SAXS. Chemical Communications, 2021, 57, 10500-10503.	2.2	10
150	Effect of acid catalysts on carbonization temperatures for ordered mesoporous carbon materials. Carbon Letters, 2016, 20, 66-71.	3.3	10
151	Effect of Mn Precursors on Benzene Oxidation with Ozone Over MnO _{<i>x</i>} /MCM-41 at Low Temperature. Journal of Nanoscience and Nanotechnology, 2011, 11, 7303-7306.	0.9	9
152	Removal of NOx at Low Temperature Over Mesoporous <i>α</i> -Mn ₂ O ₃ Catalyst. Journal of Nanoscience and Nanotechnology, 2014, 14, 2527-2531.	0.9	9
153	Heterogeneous Electrocatalyst of Palladium-Cobalt-Phosphorus on Carbon Support for Oxygen Reduction Reaction in High Temperature Proton Exchange Membrane Fuel Cells. Journal of Nanoscience and Nanotechnology, 2016, 16, 4357-4361.	0.9	9
154	Revealing the unconventional lithium storage mechanism of ordered mesoporous NiO for lithium-ion batteries. Journal of Power Sources, 2022, 526, 231135.	4.0	9
155	Photo patternable porous siloxane thin films using cyclodextrins as template materials. Thin Solid Films, 2006, 496, 526-532.	0.8	8
156	Removal of Indoor Formaldehyde Over CMK-8 Adsorbents. Journal of Nanoscience and Nanotechnology, 2013, 13, 2879-2884.	0.9	8
157	Improvement of dye-sensitized solar cell performance through infiltration of TiO2 nanoparticles between mesoporous TiO2 particles. Materials Research Bulletin, 2014, 58, 88-92.	2.7	8
158	Catalytic copyrolysis of particle board and polypropylene over Al-MCM-48. Materials Research Bulletin, 2016, 82, 61-66.	2.7	8
159	Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy. ACS Applied Materials & Interfaces, 2018, 10, 29992-29999.	4.0	8
160	Triggering anomalous capacity by nanoengineered ordered mesoporous structure for Co3O4 anode material in Li-ion rechargeable batteries. Applied Surface Science, 2022, 575, 151744.	3.1	8
161	Diarylmethanes catalyzed by nickel(II) ion on nanoporous carbon. Journal of Molecular Catalysis A, 2007, 265, 323-329.	4.8	7
162	Preparation and characterization of mesoporous carbon-supported Pt nanocatalyst and its stability under strong acidic solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 167-170.	2.3	7

#	Article	IF	CITATIONS
163	Synthesis of porous silica with hierarchical structure directed by a silica precursor carrying a pore-generating cage. Journal of Materials Chemistry, 2008, 18, 4971.	6.7	7
164	Synthesis and characterization of polycaprolactone-grafted carbon nanotubes via click reaction. Composite Interfaces, 2015, 22, 193-201.	1.3	7
165	Support effect of Ni/mesoporous silica catalysts for CO2 reforming of CH4. Research on Chemical Intermediates, 2018, 44, 3867-3878.	1.3	7
166	Pd/SiO2 as an active and durable CH4 oxidation catalyst for vehicle applications. Journal of Industrial and Engineering Chemistry, 2021, 99, 90-97.	2.9	7
167	The application of Py-GC/MS for the catalytic upgrading of oil separated from summer food waste leachate. Research on Chemical Intermediates, 2011, 37, 1283-1291.	1.3	6
168	Systematically Controlled Pore System of Ordered Mesoporous Carbons Using Phosphoric Acid as the <i>In situ</i> Generated Catalysts for Carbonization and Activation. Bulletin of the Korean Chemical Society, 2015, 36, 2062-2067.	1.0	6
169	Highly Ordered Mesoporous Antimony-Doped SnO ₂ Materials for Lithium-ion Battery. Nano, 2015, 10, 1550090.	0.5	6
170	Highly efficient mesoporous WO x /KIT-6 catalysts for oxidative desulfurization of dibenzothiophene with hydrogen peroxide. Research on Chemical Intermediates, 2018, 44, 3687-3695.	1.3	6
171	Catalytic Pyrolysis of <i>Pinus densiflora</i> Over Mesoporous Al ₂ O ₃ Catalysts. Journal of Nanoscience and Nanotechnology, 2018, 18, 6300-6303.	0.9	6
172	Improvement of Fuel Economy and Greenhouse Gases Reduction in Gasoline Powered Vehicles Through the TWC-NOx Trap Catalyst. International Journal of Automotive Technology, 2020, 21, 441-449.	0.7	6
173	Catalytic Conversion of 1,2-Dichlorobenzene Over Mesoporous Materials from Zeolite. Journal of Nanoscience and Nanotechnology, 2010, 10, 3639-3642.	0.9	5
174	Additional Lithium Storage on Dynamic Electrode Surface by Charge Redistribution in Inactive Ru Metal. Small, 2020, 16, 1905868.	5.2	5
175	Raman scattering of true 1D van der Waals Nb ₂ Se ₉ nanowires. Journal of Raman Spectroscopy, 2020, 51, 1100-1107.	1.2	5
176	Ordered Mesoporous Cu–Co–CeO ₂ Catalyst for Water-Gas Shift Reaction at High Temperature. Journal of Nanoscience and Nanotechnology, 2017, 17, 8149-8152.	0.9	5
177	Synthesis of Conducting Mesoporous Materials Implanting Carbon Nanotubes inside Particles. Chemistry Letters, 2006, 35, 510-511.	0.7	4
178	Direct sulfonation of ordered mesoporous carbon for catalyst support of direct methanol fuel cell. Studies in Surface Science and Catalysis, 2007, 165, 401-404.	1.5	4
179	Catalytic Properties of Highly Ordered Crystalline Nanoporous Tungsten Oxide in Butanol Dehydration. Journal of Nanoscience and Nanotechnology, 2014, 14, 8828-8833.	0.9	4
180	Porous hollow manganites with robust composite shells for oxidation of CO at low temperature. RSC Advances, 2016, 6, 113682-113688.	1.7	4

#	Article	IF	CITATIONS
181	Effective Photocatalytic Performance of Ordered Mesoporous Fe2O3–TiO2 Under Visible Light. Topics in Catalysis, 2017, 60, 789-795.	1.3	4
182	Ring Enlargement of Methylcyclopentane over Pt/(HZSM-48+pseudoboehmite) Catalysts. Catalysts, 2019, 9, 531.	1.6	4
183	Efficient and reusable ordered mesoporous WOx/SnO2 catalyst for oxidative desulfurization of dibenzothiophene. RSC Advances, 2021, 11, 27453-27460.	1.7	4
184	Synthesis and Biological Evaluation of Kojic acid Derivatives as Tyrosinase Inhibitors. Bulletin of the Korean Chemical Society, 2014, 35, 3647-3650.	1.0	4
185	Catalytic Oxidation of Benzene Using Mesoporous <l>α</l> -Mn ₂ O ₃ . Journal of Nanoscience and Nanotechnology, 2013, 13, 7472-7476.	0.9	3
186	3-D Ordered Mesoporous Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} S Ternary Compound Semiconductors with Controlled Band Gap Energy. Journal of Nanoscience and Nanotechnology, 2014, 14, 9033-9036.	0.9	3
187	Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores. Scientific Reports, 2016, 6, 21496.	1.6	3
188	Preparation of Mesoporous CuCe-Based Ternary Metal Oxide by Nano-Replication and Its Application to Decomposition of Liquid Monopropellant. Journal of Nanoscience and Nanotechnology, 2018, 18, 1427-1430.	0.9	3
189	Catalytic Pyrolysis of Waste Wood Plastic Composite Over H-V-MCM-41 Catalysts. Science of Advanced Materials, 2017, 9, 934-937.	0.1	3
190	Catalytic Oxidative Desulfurization of Dibenzothiophene Compounds Over Tungsten Oxide Catalysts Supported on Spherical Mesoporous TiO ₂ . Science of Advanced Materials, 2017, 9, 1236-1240.	0.1	3
191	Ordered WO /mesoporous SnO2 catalysts with excellent acetalization performance for producing bio-additives from glycerol. Molecular Catalysis, 2022, 520, 112179.	1.0	3
192	Glycerol acetalization over highly ordered mesoporous molybdenum dioxide: Excellent catalytic performance, recyclability and water-tolerance. Journal of Industrial and Engineering Chemistry, 2022, 107, 354-364.	2.9	3
193	Pt(IV) Adsorption Characteristics of Nanoporous Carbons Modified with Carboxymethylated Polyethyleneimine. Solid State Phenomena, 2007, 124-126, 1781-1784.	0.3	2
194	Nano-replication to mesoporous metal oxides using mesoporous silica as template. Studies in Surface Science and Catalysis, 2007, 165, 309-312.	1.5	2
195	Ordered mesoporous carbon as new support for direct methanol fuel cell: controlling of microporosity and graphitic character. Studies in Surface Science and Catalysis, 2007, 165, 397-400.	1.5	2
196	Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes. Nanotechnology, 2014, 25, 465706.	1.3	2
197	Evaluation of Kojyl Benzoate Derivatives as Potential Depigmenting Agents in Mouse B16/F1 Melanoma Cells. Bulletin of the Korean Chemical Society, 2016, 37, 942-945.	1.0	2
198	Catalytic Properties of Nanoporous Manganese Oxides in Decomposition of High-Purity Hydrogen Peroxide. Journal of Nanoscience and Nanotechnology, 2016, 16, 9153-9159.	0.9	2

#	Article	IF	CITATIONS
199	Selective Catalytic Reduction of NO with NH ₃ Over V-MCM-41 Catalyst. Journal of Nanoscience and Nanotechnology, 2016, 16, 1744-1747.	0.9	2
200	Hydrodechlorination of Silicon Tetrachloride to Trichlorosilane Over Ordered Mesoporous Carbon Catalysts: Effect of Pretreatment of Oxygen and Hydrochloric Acid. Journal of Nanoscience and Nanotechnology, 2016, 16, 1802-1805.	0.9	2
201	Highly Ordered Mesoporous Cobalt-Copper Composite Oxides for Preferential CO Oxidation. Catalysis Surveys From Asia, 2017, 21, 45-52.	1.0	2
202	Facile Synthesis of Nitrogen and Sulfur-Doped Ordered Mesoporous Carbon Through Solvent-Free Infiltration Method. Science of Advanced Materials, 2017, 9, 1254-1257.	0.1	2
203	Catalytic Pyrolysis of Citrus unshiu Peel Over Mesoporous Catalysts. Science of Advanced Materials, 2017, 9, 1015-1019.	0.1	2
204	Frictional Characteristics of a Nanoporous SiO2 Film with a Surface-Treated by Chemical Mechanical Polishing. Journal of the Korean Physical Society, 2009, 54, 1247-1251.	0.3	2
205	Aluminum containing periodic mesoporous organosilicas: synthesis and etherification. Studies in Surface Science and Catalysis, 2003, , 665-668.	1.5	1
206	Adsorption Characteristics of Uranyl Ions on Carboxymethylated Polyethyleneimine (CM-PEI) / Activated Carbon Composites. Solid State Phenomena, 2007, 124-126, 1257-1260.	0.3	1
207	Hydrophilicity-Controlled Ordered Mesoporous Carbon for Lithium-Sulfur Batteries. Journal of Nanoscience and Nanotechnology, 2014, 14, 9383-9387.	0.9	1
208	Facile Synthesis of Thermally Stable Mesoporous Titania Spheres with Excellent Photocatalytic Activity. Chemistry Letters, 2015, 44, 61-63.	0.7	1
209	Tunable synthesis of hierarchical mesoporous silica via porogen-carrying organosilicates. Microporous and Mesoporous Materials, 2017, 239, 409-415.	2.2	1
210	Ordered Mesoporous Cu–Mn Metal Oxides for the Catalytic Decomposition of an Energetic Ionic Liquid. Journal of Nanoscience and Nanotechnology, 2018, 18, 353-358.	0.9	1
211	Hydrodeoxygenation of Bio-Oil Model Compounds Over Pt/Al-MSU-F. Science of Advanced Materials, 2017, 9, 945-948.	0.1	1
212	Open-tubular radially cyclical electric field-flow fractionation (OTR-CyElFFF): an online concentric distribution strategy for simultaneous separation of microparticles. Lab on A Chip, 2020, 20, 3535-3543.	3.1	1
213	Functionalized periodic mesoporous organosilicas with sulfonic acid group. Studies in Surface Science and Catalysis, 2003, 146, 477-480.	1.5	0
214	A Novel and Efficient Route to Diarylmethanes Catalyzed by Nickel(II) Ion on Nanoporous Carbon ChemInform, 2005, 36, no.	0.1	0
215	FIXATION OF CARBON NANOTUBE WITHIN MESOPOROUS TITANIA PARTICLES. Functional Materials Letters, 2010, 03, 115-118.	0.7	0
216	Steam Treated Ordered Mesoporous Carbon Nanomaterials for Catalytic Conversion of Silicon Tetrachloride to Trichlorosilane. Journal of Nanoscience and Nanotechnology, 2015, 15, 6714-6718.	0.9	0

#	Article	IF	CITATIONS
217	Improvement of Pore Structure Stability of Disordered Nanoporous TiO2 Material by Nano-Propping Effect. Journal of Nanoscience and Nanotechnology, 2016, 16, 11434-11437.	0.9	Ο
218	Binary Oxide Catalyst Supported on Mesoporous CeO2 for Low Temperature Water-Gas Shift Reaction. Journal of Nanoscience and Nanotechnology, 2016, 16, 11438-11442.	0.9	0
219	International Symposium on Catalytic Conversion of Energy & Resources, 2016. Topics in Catalysis, 2017, 60, 635-636.	1.3	0
220	Batteries: Nanostructural Uniformity of Ordered Mesoporous Materials: Governing Lithium Storage Behaviors (Small 43/2018). Small, 2018, 14, 1870197.	5.2	0