Virginia Infante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7592977/publications.pdf Version: 2024-02-01

VIDCINIA INFANTE

#	Article	IF	CITATIONS
1	Fatigue life assessment of friction spot welded 7050-T76 aluminium alloy using Weibull distribution. International Journal of Fatigue, 2016, 87, 381-390.	5.7	63
2	Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding. International Journal of Fatigue, 2016, 82, 310-316.	5.7	56
3	Using SEM techniques for failure analysis of critical aeroengine components. Microscopy and Microanalysis, 2009, 15, 71-72.	0.4	55
4	Detection of multiple low-energy impact damage in composite plates using Lamb wave techniques. Composites Part B: Engineering, 2015, 80, 291-298.	12.0	51
5	Fatigue behaviour of welded joints with cracks, repaired by hammer peening. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 785-798.	3.4	38
6	Study of the fatigue behavior in welded joints of stainless steels treated by weld toe grinding and subjected to salt water corrosion. International Journal of Fatigue, 2008, 30, 453-462.	5.7	35
7	Assessment of improvement techniques effect on fatigue behaviour of friction stir welded aerospace aluminium alloys. Procedia Engineering, 2010, 2, 1605-1616.	1.2	35
8	Failure mode analysis of two crankshafts of a single cylinder diesel engine. Engineering Failure Analysis, 2015, 56, 185-193.	4.0	34
9	Aluminium Friction-stir Weld-bonded Joints. Journal of Adhesion, 2016, 92, 665-678.	3.0	33
10	Optimization of FS Welding Parameters for Improving Mechanical Behavior of AA2024-T351 Joints Based on Taguchi Method. Journal of Materials Engineering and Performance, 2013, 22, 2261-2270.	2.5	32
11	Failure of a crankshaft of an aeroengine: A contribution for an accident investigation. Engineering Failure Analysis, 2013, 35, 286-293.	4.0	32
12	Failures analysis of compressor blades of aeroengines due to service. Engineering Failure Analysis, 2009, 16, 1118-1125.	4.0	27
13	Failure mode analysis of a diesel motor crankshaft. Engineering Failure Analysis, 2017, 82, 681-686.	4.0	26
14	Fatigue performance of tungsten inert gas (TIG) and plasma welds in thin sections. International Journal of Fatigue, 1999, 21, 587-601.	5.7	25
15	Fatigue performance of hybrid overlap friction stir welding and adhesive bonding of an Alâ€Mg u alloy. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 1262-1270.	3.4	24
16	The optimization of process parameters for friction spot welded 7050-T76 aluminium alloy using a Taguchi orthogonal array. International Journal of Advanced Manufacturing Technology, 2017, 91, 3683-3695.	3.0	23
17	Failure analysis of landing gears trunnions due to service. Engineering Failure Analysis, 2014, 41, 118-123.	4.0	22
18	Fatigue behavior and microstructural characterization of a high strength steel for welded railway rails. International Journal of Fatigue, 2018, 117, 1-8.	5.7	22

#	Article	IF	CITATIONS
19	An overview on how failure analysis contributes to flight safety in the Portuguese Air Force. Engineering Failure Analysis, 2016, 65, 86-101.	4.0	21
20	Fatigue behavior of MAG welds of thermo-mechanically processed 700MC ultra high strength steel. International Journal of Fatigue, 2019, 126, 62-71.	5.7	21
21	Failure analysis of cylinder head studs of a four stroke marine diesel engine. Engineering Failure Analysis, 2019, 101, 298-308.	4.0	21
22	Fully Dynamic Numerical Simulation of the Hammer Peening Fatigue Life Improvement Technique. Procedia Engineering, 2011, 10, 1943-1948.	1.2	20
23	Failure mode analysis of two diesel engine crankshafts. Procedia Structural Integrity, 2016, 1, 313-318.	0.8	19
24	Failure analysis of a nose landing gear fork. Engineering Failure Analysis, 2017, 82, 554-565.	4.0	19
25	A failure study of housing of the gearboxes of series 2600 locomotives of the Portuguese Railway Company. Engineering Failure Analysis, 2008, 15, 154-164.	4.0	18
26	Fatigue Behaviour of Friction Stir Welded Steel Joints. Advanced Materials Research, 0, 891-892, 1488-1493.	0.3	17
27	Design and development of the ITER CTS diagnostic. EPJ Web of Conferences, 2019, 203, 03002.	0.3	17
28	Failure analysis of the nose landing gear axle of an aircraft. Engineering Failure Analysis, 2019, 101, 113-120.	4.0	17
29	Fatigue assessment of friction stir channels. International Journal of Fatigue, 2014, 62, 77-84.	5.7	16
30	Fatigue behaviour at elevated temperature of friction stir channelling solid plates of AA5083-H111 aluminium alloy. International Journal of Fatigue, 2014, 62, 85-92.	5.7	16
31	Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine. Procedia Structural Integrity, 2016, 1, 189-196.	0.8	16
32	Case studies of computational simulations of fatigue crack propagation using finite elements analysis tools. Engineering Failure Analysis, 2011, 18, 616-624.	4.0	15
33	Optimization of fibers orientation in a composite specimen. Mechanics of Advanced Materials and Structures, 2017, 24, 410-416.	2.6	15
34	Failure analysis of a crankshaft of a helicopter engine. Engineering Failure Analysis, 2019, 100, 49-59.	4.0	15
35	Experimental and numerical characterization of 3D-printed scaffolds under monotonic compression with the aid of micro-CT volume reconstruction. Bio-Design and Manufacturing, 2021, 4, 222-242.	7.7	14
36	A failure analysis study of wet liners in maritime diesel engines. Engineering Failure Analysis, 2002, 9, 403-421.	4.0	13

#	Article	IF	CITATIONS
37	A failure analysis study of cast steel railway couplings used for coal transportation. Engineering Failure Analysis, 2003, 10, 475-489.	4.0	12
38	A fracture mechanics analysis on the fatigue behaviour of cruciform joints of duplex stainless steel. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 791-810.	3.4	12
39	Fatigue analysis of railway coupling joint. Engineering Failure Analysis, 2007, 14, 1175-1184.	4.0	11
40	Fatigue Behavior of Friction Stir-Welded Joints Repaired by Grinding. Journal of Materials Engineering and Performance, 2014, 23, 1340-1349.	2.5	11
41	Characterisation of fatigue fracture surfaces of friction stir channelling specimens tested at different temperatures. Engineering Failure Analysis, 2015, 56, 204-215.	4.0	11
42	Effect of severe operation conditions on the degradation state of radiant coils in pyrolysis furnaces. Engineering Failure Analysis, 2015, 56, 194-203.	4.0	11
43	Fatigue life time prediction of PoAF Epsilon TB-30 aircraft – Implementation of automatic crack growth based on 3D finite element method. Engineering Failure Analysis, 2013, 33, 17-28.	4.0	10
44	Friction stir weld-bonding defect inspection using phased array ultrasonic testing. International Journal of Advanced Manufacturing Technology, 2017, 93, 3125-3134.	3.0	10
45	Metallographic and morphological characterization of sub-surface friction stirred channels produced on AA5083-H111. International Journal of Advanced Manufacturing Technology, 2019, 105, 2215-2235.	3.0	10
46	Characterization and optimization of hybrid carbon–glass epoxy composites under combined loading. Journal of Composite Materials, 2019, 53, 2593-2605.	2.4	10
47	Fatigue Behaviour of Aluminium Lap Joints Produced by Laser Beam and Friction Stir Welding. Procedia Engineering, 2014, 74, 293-296.	1.2	9
48	Numerical and experimental study of aircraft structural health. International Journal of Fatigue, 2020, 132, 105348.	5.7	9
49	Monitoring of the mechanical load and thermal history during friction stir channelling under constant position and constant force control modes. Journal of Manufacturing Processes, 2020, 49, 323-334.	5.9	9
50	Fatigue properties of combined friction stir and adhesively bonded AA6082â€T6 overlap joints. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2169-2180.	3.4	9
51	Review on dissimilar structures joints failure. Engineering Failure Analysis, 2021, 129, 105652.	4.0	9
52	Mechanical Characterization of Friction Stir Channels under Internal Pressure and In-Plane Bending. Key Engineering Materials, 0, 488-489, 105-108.	0.4	8
53	Metallographic Characterization of Friction Stir Channels. Materials Science Forum, 2012, 730-732, 817-822.	0.3	8
54	Effect of Microstructure on the Fatigue Behavior of a Friction Stirred Channel Aluminium Alloy. Procedia Engineering, 2013, 66, 264-273.	1.2	8

#	Article	IF	CITATIONS
55	Aluminum Friction Stir Weldbonding. Procedia Engineering, 2015, 114, 223-231.	1.2	8
56	Using a standard specimen for crack propagation under plain strain conditions. International Journal of Structural Integrity, 2010, 1, 332-343.	3.3	7
57	RAMI analysis of the ITER LFS CTS system. Fusion Engineering and Design, 2017, 123, 663-668.	1.9	7
58	Design and failure modes of a standard railway catenary cantilever support. Engineering Failure Analysis, 2020, 107, 104217.	4.0	7
59	Algorithm for automatic fatigue crack growth simulation on welded high strength steels. Frattura Ed Integrita Strutturale, 2019, 13, 257-268.	0.9	7
60	Development of hybrid friction stir welding and adhesive bonding single lap joints in aluminium alloys. Frattura Ed Integrita Strutturale, 2019, 13, 269-285.	0.9	7
61	Finite Element Model Development Applied to Portuguese Granites for Contact Analysis of Two Dowel Fixing Conditions Used in Cladding. Key Engineering Materials, 0, 548, 255-266.	0.4	6
62	Train passenger car floor panel testing using digital image correlation and strain gauges and comparison with finite element modelling. Engineering Failure Analysis, 2016, 69, 108-121.	4.0	6
63	Micro-crack propagation on a biomimetic bone like composite material studied with the extended finite element method. Procedia Structural Integrity, 2016, 1, 18-25.	0.8	6
64	Maritime and Other Key Transport Issues for the Future – Education and Training in the Context of Lifelong Learning. Transactions on Maritime Science, 2019, 8, 84-98.	0.6	6
65	Failure analysis of compressor blades of a helicopter engine. Engineering Failure Analysis, 2019, 104, 67-74.	4.0	6
66	Flexural fatigue behaviour of an asymmetric sandwich composite made of limestone and cork agglomerate. International Journal of Fatigue, 2020, 130, 105264.	5.7	6
67	Experimental and numerical investigation on the fatigue behaviour of friction stirred channel plates. Engineering Failure Analysis, 2019, 103, 57-69.	4.0	5
68	Self-sensing FS Weld-bonded joints for structural monitoring. Procedia Structural Integrity, 2020, 25, 234-245.	0.8	5
69	Role of Friction Stir Channel Geometry on the Fatigue Behaviour of AA5083-H111 at 120°C and 200°C. Advanced Materials Research, 0, 891-892, 1494-1499.	0.3	4
70	Tool and welding design. , 2014, , 199-240.		4
71	Fatigue Performance of Friction Stir Weld-Bonded Al-Mg joints. Procedia Structural Integrity, 2019, 17, 949-956.	0.8	4
72	Numerical study of the Epsilon TB30 aircraft frame. Engineering Failure Analysis, 2020, 117, 104966.	4.0	4

#	Article	IF	CITATIONS
73	The effect of prior adhesive bonding on the corrosion behavior of AA2024 FSWed single lap joints. Mechanics of Materials, 2021, , 104122.	3.2	4
74	Experimental Adhesive Failure Criteria for Analysis of Aerospace Structures. Procedia Engineering, 2015, 114, 416-421.	1.2	3
75	Friction Stir Welding of Shipbuilding Steel with Primer. Soldagem E Inspecao, 2016, 21, 16-29.	0.6	3
76	Local Response of Sialoliths to Lithotripsy: Cues on Fragmentation Outcome. Microscopy and Microanalysis, 2017, 23, 584-598.	0.4	3
77	Experimental-numerical correlation of the dynamic behavior of the Portuguese guitar. Applied Acoustics, 2018, 131, 51-60.	3.3	3
78	Prediction of the fatigue lifetime of the Portuguese Air Force Epsilon TB-30 aircraft. Engineering Failure Analysis, 2020, 116, 104764.	4.0	3
79	Modelling Microstructural Effects on the Mechanical Behaviour of a Friction Stirred Channel Aluminium Alloy. Key Engineering Materials, 0, 577-578, 37-40.	0.4	2
80	The effect of welding direction in the fatigue life of aluminium FS welded lap joints. International Journal of Structural Integrity, 2015, 6, 775-786.	3.3	2
81	Mechanical characterization and experimental performance of an aerospace adhesive. Engineering Failure Analysis, 2016, 69, 43-56.	4.0	2
82	Numerical Simulation of the Fatigue Behaviour of a Friction Stirred Channel Aluminium Alloy. MATEC Web of Conferences, 2018, 165, 21008.	0.2	2
83	SHM TB30, Numerical Study of an Aircraft Structural Condition. Procedia Structural Integrity, 2019, 17, 878-885.	0.8	2
84	Development and validation of failure preventive tools for aeronautical applications. Engineering Failure Analysis, 2019, 101, 329-341.	4.0	2
85	The Role of Digital Libraries in Teaching Materials Science and Engineering. Advances in Chemical and Materials Engineering Book Series, 2015, , 190-210.	0.3	2
86	Optimization of a cruciform specimen for fatigue crack growth under in and out-of-phase in-plane biaxial loading conditions. Mechanics of Advanced Materials and Structures, 2023, 30, 1649-1666.	2.6	2
87	Determination of the loading types responsible for the deformed shape of an aircraft cockpit. Engineering Failure Analysis, 2010, 17, 1008-1016.	4.0	1
88	Influence of Milling and Abrasive Waterjet Cutting on the Fatigue Behaviour of DP600 Steel Sheet. Advanced Materials Research, 0, 891-892, 1761-1766.	0.3	1
89	Application of microscopy techniques for forensic analysis of a failed aircraft crankshaft. Microscopy and Microanalysis, 2015, 21, 102-103.	0.4	1
90	A case study in the application of failure analysis techniques to Antarctic Systems: EDEN ISS. , 2016, , .		1

6

#	ARTICLE	IF	CITATIONS
91	XV Portuguese Conference on Fracture (XV PCF). Theoretical and Applied Fracture Mechanics, 2016, 85, 1.	4.7	1
92	Fatigue crack propagation direction under different loading conditions using MTS and MSS criteria. Procedia Structural Integrity, 2022, 37, 57-64.	0.8	1
93	Failure analysis of a parabolic spring belonging to a railway wagon. Engineering Failure Analysis, 2022, 140, 106526.	4.0	1
94	A Fatigue Study of C-130 Aircraft Skin Using the Stop Drill Technique. Materials Science Forum, 0, 730-732, 685-690.	0.3	0
95	The Sixth International Conference on Engineering Failure Analysis. Engineering Failure Analysis, 2015, 56, 1.	4.0	0
96	The Sixth International Conference on Engineering Failure Analysis - Part 2. Engineering Failure Analysis, 2016, 61, 1.	4.0	0
97	An algorithm for fatigue crack growth applied to mixed and biaxial mode loadings. Procedia Structural Integrity, 2019, 17, 547-554.	0.8	0
98	The Role of Digital Libraries in Teaching Materials Science and Engineering. , 2017, , 1420-1441.		0
99	RCM 3 Methodology Application to Armored Military Vehicle Cooling System. U Porto Journal of Engineering, 2021, 7, 46-60.	0.4	0