JÃ³zsef Garay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7592968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ideal Free Distributions, Evolutionary Games, and Population Dynamics in Multiple‧pecies Environments. American Naturalist, 2004, 164, 473-489.	2.1	112
2	A predator–prey refuge system: Evolutionary stability in ecological systems. Theoretical Population Biology, 2009, 76, 248-257.	1.1	48
3	Is envy one of the possible evolutionary roots of charity?. BioSystems, 2011, 106, 28-35.	2.0	41
4	Cooperation in defence against a predator. Journal of Theoretical Biology, 2009, 257, 45-51.	1.7	38
5	Evolutionary Stability Concepts for N–species Frequency-dependent Interactions. Journal of Theoretical Biology, 2001, 211, 1-10.	1.7	36
6	Evolutionary stability in Lotka–Volterra systems. Journal of Theoretical Biology, 2003, 222, 233-245.	1.7	32
7	Stability in -species coevolutionary systems. Theoretical Population Biology, 2003, 64, 519-533.	1.1	28
8	Can Interactions Between an Omnivorous Hemipteran and an Egg Parasitoid Limit the Level of Biological Control for the Tomato Pinworm?. Environmental Entomology, 2015, 44, 12-26.	1.4	26
9	Game-Theoretic Methods for Functional Response and Optimal Foraging Behavior. PLoS ONE, 2014, 9, e88773.	2.5	24
10	Evolutionary stability for matrix games under time constraints. Journal of Theoretical Biology, 2017, 415, 1-12.	1.7	22
11	The effects of opportunistic and intentional predators on the herding behavior of prey. Ecology, 2011, 92, 432-440.	3.2	19
12	A two-agent model applied to the biological control of the sugarcane borer (Diatraea saccharalis) by the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes. BioSystems, 2016, 141, 45-54.	2.0	15
13	Optimal nutrient foraging strategy of an omnivore: Liebig's law determining numerical response. Journal of Theoretical Biology, 2012, 310, 31-42.	1.7	14
14	The ESS and replicator equation in matrix games under time constraints. Journal of Mathematical Biology, 2018, 76, 1951-1973.	1.9	14
15	Sib cannibalism can be adaptive for kin. Ecological Modelling, 2016, 334, 51-59.	2.5	13
16	Strict ESS for n-species systems. BioSystems, 2000, 56, 131-137.	2.0	12
17	Many species partial adaptive dynamics. BioSystems, 2002, 65, 19-23.	2.0	11
18	A new multistage dynamic model for biological control exemplified by the host–parasitoid system Spodoptera exigua–Chelonus oculator. Journal of Pest Science, 2015, 88, 343-358.	3.7	11

JÃ³zsef Garay

#	Article	IF	CITATIONS
19	Genetical reachability: When does a sexual population realize all phenotypic states?. Journal of Mathematical Biology, 1998, 37, 146-154.	1.9	10
20	Survivor's dilemma: Defend the group or flee?. Theoretical Population Biology, 2011, 80, 217-225.	1.1	9
21	Optimal Forager against Ideal Free Distributed Prey. American Naturalist, 2015, 186, 111-122.	2.1	9
22	The ESS for evolutionary matrix games under time constraints and its relationship with the asymptotically stable rest point of the replicator dynamics. Journal of Mathematical Biology, 2020, 80, 743-774.	1.9	9
23	When optimal foragers meet in a game theoretical conflict: A model of kleptoparasitism. Journal of Theoretical Biology, 2020, 502, 110306.	1.7	9
24	Evolutionarily Stable Allele Distributions. Journal of Theoretical Biology, 1998, 191, 163-172.	1.7	8
25	Active centrum hypothesis: The origin of chiral homogeneity and the RNA-world. BioSystems, 2011, 103, 1-12.	2.0	8
26	Relative Advantage: a Substitute for Mean Fitness in Fisher's Fundamental Theorem?. Journal of Theoretical Biology, 1999, 201, 215-218.	1.7	7
27	A game-theoretic model for punctuated equilibrium: Species invasion and stasis through coevolution. BioSystems, 2006, 84, 1-14.	2.0	7
28	Functional response and population dynamics for fighting predator, based on activity distribution. Journal of Theoretical Biology, 2015, 368, 74-82.	1.7	7
29	Evolutionary Substitution and Replacement in N-Species Lotka–Volterra Systems. Dynamic Games and Applications, 2020, 10, 695-718.	1.9	7
30	A temporal model of territorial defence with antagonistic interactions. Theoretical Population Biology, 2020, 134, 15-35.	1.1	7
31	Evolutionarily stable sets in the single-locus frequency-dependent model of natural selection. Journal of Mathematical Biology, 2003, 47, 465-482.	1.9	6
32	Coincidence of ESAD and ESS in dominant–recessive hereditary systems. Journal of Theoretical Biology, 2003, 222, 297-305.	1.7	6
33	Opportunistic random searcher versus intentional search image user. Scientific Reports, 2018, 8, 3336.	3.3	6
34	The dynamic stability of coalitionist behaviour for two-strategy bimatrix games. Theory and Decision, 2004, 56, 141-152.	1.0	5
35	Under multilevel selection: "When shall you be neither spiteful nor envious?― Journal of Theoretical Biology, 2014, 340, 73-84	1.7	5
36	Evolutionary game model for a marketing cooperative with penalty for unfaithfulness. Nonlinear Analysis: Real World Applications, 2010, 11, 742-749.	1.7	4

JÃ³zsef Garay

#	Article	IF	CITATIONS
37	To save or not to save your family member's life? Evolutionary stability of self-sacrificing life history strategy in monogamous sexual populations. BMC Evolutionary Biology, 2019, 19, 147.	3.2	4
38	When will a sexual population evolve to an ESS?. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1007-1010.	2.6	3
39	Monogamy Has a Fixation Advantage Based on Fitness Variance in an Ideal Promiscuity Group. Bulletin of Mathematical Biology, 2012, 74, 2676-91.	1.9	3
40	Survival phenotype, selfish individual versus Darwinian phenotype. Journal of Theoretical Biology, 2017, 430, 86-91.	1.7	3
41	Game-theoretical model for marketing cooperative in fisheries. Applied Mathematics and Computation, 2018, 329, 325-338.	2.2	3
42	Juvenile honest food solicitation and parental investment as a life history strategy: A kin demographic selection model. PLoS ONE, 2018, 13, e0193420.	2.5	3
43	Adaptive Dynamics Based on Ecological Stability. Annals of the International Society of Dynamic Games, 2007, , 271-286.	0.3	3
44	When does the variance of replicator fitness decrease?. Journal of Mathematical Biology, 2003, 47, 457-464.	1.9	2
45	Dynamic model and simulation analysis of the genetic impact of population harvesting. Applied Mathematics and Computation, 2010, 216, 565-575.	2.2	2
46	Do Development and Diet Determine the Degree of Cannibalism in Insects? To Eat or Not to Eat Conspecifics. Insects, 2020, 11, 242.	2.2	2
47	Theoretical Foundation of the Control of Pollination by Hoverflies in a Greenhouse. Agronomy, 2021, 11, 167.	3.0	2
48	Relative Advantage and Fundamental Theorems of Natural Selection. , 2008, , 63-74.		2
49	Best Reply Player Against Mixed Evolutionarily Stable Strategy User. Bulletin of Mathematical Biology, 2022, 84, 23.	1.9	2