Ryan M O'connell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7592926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	No small matter: emerging roles for exosomal miRNAs in the immune system. FEBS Journal, 2022, 289, 4021-4037.	2.2	10
2	Maternal schistosomiasis impairs offspring Interleukin-4 production and B cell expansion. PLoS Pathogens, 2021, 17, e1009260.	2.1	6
3	A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nature Communications, 2021, 12, 2620.	5.8	33
4	Adaptive immunity induces mutualism between commensal eukaryotes. Nature, 2021, 596, 114-118.	13.7	110
5	Disrupted macrophage metabolic reprogramming in aged soleus muscle during early recovery following disuse atrophy. Aging Cell, 2021, 20, e13448.	3.0	12
6	miR-155 promotes T reg cell development by safeguarding medullary thymic epithelial cell maturation. Journal of Experimental Medicine, 2021, 218, .	4.2	10
7	Epithelial-myeloid exchange of MHC class II constrains immunity and microbiota composition. Cell Reports, 2021, 37, 109916.	2.9	14
8	Megakaryocyte-specific knockout of the Mir-99b/let7e/125a cluster lowers platelet count without altering platelet function. Blood Cells, Molecules, and Diseases, 2021, 92, 102624.	0.6	1
9	miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood, 2020, 136, 1760-1772.	0.6	26
10	MicroRNAs: At the Interface of Metabolic Pathways and Inflammatory Responses by Macrophages. Frontiers in Immunology, 2020, 11, 1797.	2.2	22
11	CIPR: a web-based R/shiny app and R package to annotate cell clusters in single cell RNA sequencing experiments. BMC Bioinformatics, 2020, 21, 191.	1.2	45
12	The miR-26b-5p/KPNA2 Axis Is an Important Regulator of Burkitt Lymphoma Cell Growth. Cancers, 2020, 12, 1464.	1.7	19
13	T Cell–Expressed microRNA-155 Reduces Lifespan in a Mouse Model of Age-Related Chronic Inflammation. Journal of Immunology, 2020, 204, 2064-2075.	0.4	18
14	Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Reports, 2020, 30, 2889-2899.e6.	2.9	34
15	Inhibition of SHP-1 Expands the Repertoire of Antitumor T Cells Available to Respond to Immune Checkpoint Blockade. Cancer Immunology Research, 2020, 8, 506-517.	1.6	23
16	Absence of MyD88 from Skeletal Muscle Protects Female Mice from Inactivityâ€Induced Adiposity and Insulin Resistance. Obesity, 2020, 28, 772-782.	1.5	13
17	Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia, 2020, 68, 2345-2360.	2.5	49
18	T cell–mediated regulation of the microbiota protects against obesity. Science, 2019, 365, .	6.0	236

#	Article	IF	CITATIONS
19	Aging impairs mouse skeletal muscle macrophage polarization and muscle-specific abundance during recovery from disuse. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E85-E98.	1.8	51
20	Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease. PLoS Genetics, 2019, 15, e1007970.	1.5	48
21	Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host and Microbe, 2019, 25, 285-299.e8.	5.1	342
22	MicroRNA-155 coordinates the immunological landscape within murine melanoma and correlates with immunity in human cancers. JCI Insight, 2019, 4, .	2.3	31
23	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	13.5	6
24	The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. ELife, 2019, 8, .	2.8	41
25	MicroRNA 155 and viral-induced neuroinflammation. Journal of Neuroimmunology, 2017, 308, 17-24.	1.1	36
26	A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Science Translational Medicine, 2017, 9, .	5.8	159
27	miR-155 promotes FLT3-ITD–induced myeloproliferative disease through inhibition of the interferon response. Blood, 2017, 129, 3074-3086.	0.6	57
28	Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5497-5502.	3.3	23
29	Rab27-Dependent Exosome Production Inhibits Chronic Inflammation and Enables Acute Responses to Inflammatory Stimuli. Journal of Immunology, 2017, 199, 3559-3570.	0.4	74
30	Antitumor immunity is defective in T cell–specific microRNA-155–deficient mice and is rescued by immune checkpoint blockade. Journal of Biological Chemistry, 2017, 292, 18530-18541.	1.6	67
31	MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood, 2017, 130, 1290-1301.	0.6	138
32	MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. Journal of Neuroinflammation, 2016, 13, 240.	3.1	57
33	Intramyocellular ceramides and skeletal muscle mitochondrial respiration are partially regulated by Toll-like receptor 4 during hindlimb unloading. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R879-R887.	0.9	21
34	microRNAs in Psoriasis. Journal of Investigative Dermatology, 2016, 136, 365-371.	0.3	108
35	Genome-Wide CRISPR-Cas9 Screen Identifies MicroRNAs That Regulate Myeloid Leukemia Cell Growth. PLoS ONE, 2016, 11, e0153689.	1.1	46
36	Noncoding RNAs and chronic inflammation: Microâ€managing the fire within. BioEssays, 2015, 37, 1005-1015.	1.2	33

#	Article	IF	CITATIONS
37	Endogenous miR-29a regulates HSC function in mammals. Blood, 2015, 125, 2180-2181.	0.6	3
38	MyD88 Signaling in T Cells Directs IgA-Mediated Control of the Microbiota to Promote Health. Cell Host and Microbe, 2015, 17, 153-163.	5.1	277
39	miR-155-SOCS1 as a Functional Axis: Satisfying the Burden of Proof. Immunity, 2015, 43, 3-4.	6.6	34
40	Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nature Communications, 2015, 6, 7321.	5.8	601
41	MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nature Communications, 2015, 6, 8642.	5.8	132
42	Antagonistic Interplay between MicroRNA-155 and IL-10 during Lyme Carditis and Arthritis. PLoS ONE, 2015, 10, e0135142.	1.1	24
43	MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis. Oncotarget, 2015, 6, 28556-28572.	0.8	53
44	MicroRNAs, T follicular helper cells and inflammaging. Oncotarget, 2015, 6, 32295-32296.	0.8	1
45	MicroRNAs and the regulation of intestinal homeostasis. Frontiers in Genetics, 2014, 5, 347.	1.1	76
46	MicroRNA-146a Provides Feedback Regulation of Lyme Arthritis but Not Carditis during Infection with Borrelia burgdorferi. PLoS Pathogens, 2014, 10, e1004212.	2.1	38
47	miR-155 Promotes T Follicular Helper Cell Accumulation during Chronic, Low-Grade Inflammation. Immunity, 2014, 41, 605-619.	6.6	145
48	Conversion of Danger Signals into Cytokine Signals by Hematopoietic Stem and Progenitor Cells for Regulation of Stress-Induced Hematopoiesis. Cell Stem Cell, 2014, 14, 445-459.	5.2	276
49	MicroRNA control in the development of systemic autoimmunity. Arthritis Research and Therapy, 2013, 15, 202.	1.6	33
50	MicroRNA-155 Confers Encephalogenic Potential to Th17 Cells by Promoting Effector Gene Expression. Journal of Immunology, 2013, 190, 5972-5980.	0.4	90
51	Targeting Human MicroRNA Genes Using Engineered Tal-Effector Nucleases (TALENs). PLoS ONE, 2013, 8, e63074.	1.1	37
52	MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. ELife, 2013, 2, e00537.	2.8	120
53	MicroRNAs function on a new level. Blood, 2012, 119, 3875-3876.	0.6	12
54	Epistasis between MicroRNAs 155 and 146a during T Cell-Mediated Antitumor Immunity. Cell Reports, 2012, 2, 1697-1709.	2.9	154

#	Article	IF	CITATIONS
55	Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4233-4238.	3.3	143
56	MicroRNAs and Hematopoietic Cell Development. Current Topics in Developmental Biology, 2012, 99, 145-174.	1.0	55
57	MiR-23b is a safeguard against autoimmunity. Nature Medicine, 2012, 18, 1009-1010.	15.2	22
58	microRNA Regulation of Inflammatory Responses. Annual Review of Immunology, 2012, 30, 295-312.	9.5	814
59	Single Cell Proteomics Reveals Novel Cytokine-Producing Function of Hematopoietic Stem and Progenitor Cells. Blood, 2012, 120, 26-26.	0.6	2
60	MicroRNA-125b Potentiates Macrophage Activation. Journal of Immunology, 2011, 187, 5062-5068.	0.4	286
61	A MyD88-dependent IFNÎ ³ R-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge. Cell Research, 2011, 21, 1068-1079.	5.7	20
62	NF-κB dysregulation in microRNA-146a–deficient mice drives the development of myeloid malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9184-9189.	3.3	342
63	MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing Inflammatory T Cell Development. Immunity, 2010, 33, 607-619.	6.6	800
64	MicroRNA-34a Perturbs B Lymphocyte Development by Repressing the Forkhead Box Transcription Factor Foxp1. Immunity, 2010, 33, 48-59.	6.6	219
65	Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 2010, 10, 111-122.	10.6	1,391
66	Lentiviral Vector Delivery of Human Interleukin-7 (hIL-7) to Human Immune System (HIS) Mice Expands T Lymphocyte Populations. PLoS ONE, 2010, 5, e12009.	1.1	61
67	MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14235-14240.	3.3	250
68	Coordination of tolerogenic immune responses by the commensal microbiota. Journal of Autoimmunity, 2010, 34, J220-J225.	3.0	232
69	Inositol phosphatase SHIP1 is a primary target of miR-155. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7113-7118.	3.3	732
70	Conserved Herpesviral Kinase Promotes Viral Persistence by Inhibiting the IRF-3-Mediated Type I Interferon Response. Cell Host and Microbe, 2009, 5, 166-178.	5.1	133
71	Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes Blood, 2009, 113, 1422-1431.	0.6	119
72	MicroRNAs: new regulators of immune cell development and function. Nature Immunology, 2008, 9, 839-845.	7.0	1,043

#	Article	IF	CITATIONS
73	Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. Journal of Experimental Medicine, 2008, 205, 585-594.	4.2	644
74	Inflammasome-Mediated Production of IL-1β Is Required for Neutrophil Recruitment against <i>Staphylococcus aureus</i> In Vivo. Journal of Immunology, 2007, 179, 6933-6942.	0.4	294
75	MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1604-1609.	3.3	1,679
76	MyD88 Mediates Neutrophil Recruitment Initiated by IL-1R but Not TLR2 Activation in Immunity against Staphylococcus aureus. Immunity, 2006, 24, 79-91.	6.6	331
77	A role for IRF3-dependent RXRα repression in hepatotoxicity associated with viral infections. Journal of Experimental Medicine, 2006, 203, 2589-2602.	4.2	34
78	TLR agonists regulate PDGF-B production and cell proliferation through TGF-β/type I IFN crosstalk. EMBO Journal, 2005, 24, 4071-4081.	3.5	39
79	Combating Bacterial Pathogens Through Host Defense Gene Programs. Current Immunology Reviews, 2005, 1, 43-54.	1.2	6
80	Immune Activation of Type I IFNs by <i>Listeria monocytogenes</i> Occurs Independently of TLR4, TLR2, and Receptor Interacting Protein 2 but Involves TANK-Binding Kinase 1. Journal of Immunology, 2005, 174, 1602-1607.	0.4	83
81	Cutting Edge: TLR4 Activation Mediates Liver Ischemia/Reperfusion Inflammatory Response via IFN Regulatory Factor 3-Dependent MyD88-Independent Pathway. Journal of Immunology, 2004, 173, 7115-7119.	0.4	429
82	Type I Interferon Production Enhances Susceptibility to Listeria monocytogenes Infection. Journal of Experimental Medicine, 2004, 200, 437-445.	4.2	449
83	Toll-like Receptors Induce a Phagocytic Gene Program through p38. Journal of Experimental Medicine, 2004, 199, 81-90.	4.2	377
84	LXR-Dependent Gene Expression Is Important for Macrophage Survival and the Innate Immune Response. Cell, 2004, 119, 299-309.	13.5	498
85	Toll-Like Receptor 3 Mediates a More Potent Antiviral Response Than Toll-Like Receptor 4. Journal of Immunology, 2003, 170, 3565-3571.	0.4	163
86	IRF3 Mediates a TLR3/TLR4-Specific Antiviral Gene Program. Immunity, 2002, 17, 251-263.	6.6	781