Min Gyu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7592412/publications.pdf Version: 2024-02-01

20 papers	1,126 citations	623734 14 h-index	713466 21 g-index
22	22	22	2229
all docs	docs citations	times ranked	citing authors

MIN CVILLEE

#	Article	IF	CITATIONS
1	KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell, 2020, 37, 599-617.e7.	16.8	137
2	SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nature Cell Biology, 2019, 21, 214-225.	10.3	133
3	MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Molecular Cell, 2018, 70, 825-841.e6.	9.7	123
4	ZMYND8 Reads the Dual Histone Mark H3K4me1-H3K14ac to Antagonize the Expression of Metastasis-Linked Genes. Molecular Cell, 2016, 63, 470-484.	9.7	112
5	JARID1D Is a Suppressor and Prognostic Marker of Prostate Cancer Invasion and Metastasis. Cancer Research, 2016, 76, 831-843.	0.9	99
6	Histone methylation modifiers in cellular signaling pathways. Cellular and Molecular Life Sciences, 2015, 72, 4577-4592.	5.4	92
7	An essential role for UTX in resolution and activation of bivalent promoters. Nucleic Acids Research, 2016, 44, 3659-3674.	14.5	63
8	HP1Î ³ Promotes Lung Adenocarcinoma by Downregulating the Transcription-Repressive Regulators NCOR2 and ZBTB7A. Cancer Research, 2018, 78, 3834-3848.	0.9	63
9	A feedback loop comprising PRMT7 and miR-24-2 interplays with Oct4, Nanog, Klf4 and c-Myc to regulate stemness. Nucleic Acids Research, 2016, 44, 10603-10618.	14.5	56
10	PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression. Nature Communications, 2019, 10, 636.	12.8	53
11	The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition. Oncotarget, 2017, 8, 65548-65565.	1.8	49
12	Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma. Cell Reports, 2020, 33, 108293.	6.4	39
13	Structural insights into trans-histone regulation of H3K4 methylation by unique histone H4 binding of MLL3/4. Nature Communications, 2019, 10, 36.	12.8	30
14	Protein arginine methyltransferase 7–mediated microRNA-221 repression maintains Oct4, Nanog, and Sox2 levels in mouse embryonic stem cells. Journal of Biological Chemistry, 2018, 293, 3925-3936.	3.4	19
15	Cancer-epigenetic function of the histone methyltransferase KMT2D and therapeutic opportunities for the treatment of KMT2D-deficient tumors. Oncotarget, 2021, 12, 1296-1308.	1.8	19
16	ΔNp63 regulates a common landscape of enhancer associated genes in non-small cell lung cancer. Nature Communications, 2022, 13, 614.	12.8	13
17	Broad genic repression domains signify enhanced silencing of oncogenes. Nature Communications, 2020, 11, 5560.	12.8	10
18	A chiralityâ€dependent action of vitamin C in suppressing Kirsten rat sarcoma mutant tumor growth by the oxidative combination: Rationale for cancer therapeutics. International Journal of Cancer, 2020, 146, 2822-2828.	5.1	9

#	Article	IF	CITATIONS
19	MACMIC Reveals A Dual Role of CTCF in Epigenetic Regulation of Cell Identity Genes. Genomics, Proteomics and Bioinformatics, 2021, 19, 140-153.	6.9	4
20	Cancer Stem Cells, not Bulk Tumor Cells, Determine Mechanisms of Resistance to SMO Inhibitors. Cancer Research Communications, 2022, 2, 402-416.	1.7	2