Jiang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7592117/publications.pdf Version: 2024-02-01

		9254	9334
152	21,736	74	143
papers	citations	h-index	g-index
152	152	152	8574
all docs	docs citations	times ranked	citing authors

LIANC 7HOU

#	Article	IF	CITATIONS
1	Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2480-2501.	8.8	1,553
2	lssues and opportunities facing aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 3288-3304.	15.6	1,313
3	Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy and Environmental Science, 2020, 13, 503-510.	15.6	828
4	Li ⁺ intercalated V ₂ O ₅ · <i>n</i> H ₂ O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy and Environmental Science, 2018, 11, 3157-3162.	15.6	785
5	Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged Highâ€Energyâ€Đensity and Durable Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1808375.	7.8	568
6	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	15.6	497
7	lssues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zincâ€ion Batteries. Energy and Environmental Materials, 2020, 3, 146-159.	7.3	475
8	A Sieveâ€Functional and Uniformâ€Porous Kaolin Layer toward Stable Zinc Metal Anode. Advanced Functional Materials, 2020, 30, 2000599.	7.8	449
9	Surfaceâ€Preferred Crystal Plane for a Stable and Reversible Zinc Anode. Advanced Materials, 2021, 33, e2100187.	11.1	432
10	Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy, 2018, 51, 579-587.	8.2	425
11	Metal Organic Framework-Templated Synthesis of Bimetallic Selenides with Rich Phase Boundaries for Sodium-Ion Storage and Oxygen Evolution Reaction. ACS Nano, 2019, 13, 5635-5645.	7.3	400
12	Design Strategies for Highâ€Energyâ€Đensity Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	383
13	Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 1015-1033.	8.8	376
14	Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€Ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703155.	10.2	374
15	Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy, 2019, 61, 617-625.	8.2	340
16	Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 2020, 14, 16321-16347.	7.3	340
17	Investigation of V ₂ O ₅ as a low-cost rechargeable aqueous zinc ion battery cathode. Chemical Communications, 2018, 54, 4457-4460.	2.2	330
18	Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 34, 545-562.	9.5	330

#	Article	IF	CITATIONS
19	Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chemical Engineering Journal, 2020, 379, 122248.	6.6	308
20	Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nature Sustainability, 2022, 5, 225-234.	11.5	293
21	Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. Journal of Materials Chemistry A, 2019, 7, 940-945.	5.2	291
22	V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode. Nano-Micro Letters, 2019, 11, 25.	14.4	274
23	Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Materials, 2018, 13, 168-174.	9.5	271
24	Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Materials, 2020, 24, 394-401.	9.5	270
25	Binder-free stainless steel@Mn ₃ O ₄ nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. Journal of Materials Chemistry A, 2018, 6, 9677-9683.	5.2	269
26	Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Materials, 2020, 27, 109-116.	9.5	262
27	Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Materials Today Energy, 2020, 16, 100396.	2.5	245
28	Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite. CheM, 2017, 3, 152-163.	5.8	228
29	Mechanistic Insights of Zn ²⁺ Storage in Sodium Vanadates. Advanced Energy Materials, 2018, 8, 1801819.	10.2	225
30	MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy, 2016, 26, 57-65.	8.2	224
31	pHâ€Buffer Contained Electrolyte for Selfâ€Adjusted Cathodeâ€Free Zn–MnO ₂ Batteries with Coexistence of Dual Mechanisms. Small Structures, 2021, 2, 2100119.	6.9	196
32	Interfacial <scp>adsorption–insertion</scp> mechanism induced by phase boundary toward better aqueous <scp>Znâ€ion</scp> battery. InformaÄnÃ-Materiály, 2021, 3, 1028-1036.	8.5	194
33	Cathode Interfacial Layer Formation <i>via in Situ</i> Electrochemically Charging in Aqueous Zinc-Ion Battery. ACS Nano, 2019, 13, 13456-13464.	7.3	184
34	Oxygen Defects in β-MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. IScience, 2020, 23, 100797.	1.9	184
35	Caging Na ₃ V ₂ (PO ₄) ₂ F ₃ Microcubes in Crossâ€Linked Graphene Enabling Ultrafast Sodium Storage and Longâ€Term Cycling. Advanced Science, 2018, 5, 1800680.	5.6	182
36	Interfacial Engineering Strategy for High-Performance Zn Metal Anodes. Nano-Micro Letters, 2022, 14, 6.	14.4	177

#	Article	IF	CITATIONS
37	Integrated â€~all-in-one' strategy to stabilize zinc anodes for high-performance zinc-ion batteries. National Science Review, 2022, 9, nwab177.	4.6	174
38	Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Science Bulletin, 2022, 67, 955-962.	4.3	172
39	Two-dimensional hybrid nanosheets of few layered MoSe ₂ on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 15302-15308.	5.2	167
40	Cell-like-carbon-micro-spheres for robust potassium anode. National Science Review, 2021, 8, nwaa276.	4.6	166
41	Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Materials, 2019, 18, 10-14.	9.5	165
42	Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy, 2019, 60, 312-323.	8.2	154
43	Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries. Nano-Micro Letters, 2021, 13, 69.	14.4	152
44	Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustainable Chemistry and Engineering, 2019, 7, 17737-17746.	3.2	151
45	Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. Journal of Materials Chemistry A, 2017, 5, 13983-13993.	5.2	150
46	Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling Highâ€Rate Longâ€Life Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1905267.	7.8	140
47	Spontaneous Construction of Nucleophilic Carbonylâ€Containing Interphase toward Ultrastable Zincâ€Metal Anodes. Advanced Materials, 2022, 34, .	11.1	138
48	Nitrogen-doped TiO ₂ nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. Journal of Materials Chemistry A, 2016, 4, 18278-18283.	5.2	135
49	Two-dimensional NiCo ₂ O ₄ nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale, 2015, 7, 7035-7039.	2.8	134
50	Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. Journal of Energy Chemistry, 2021, 55, 549-556.	7.1	132
51	Regulating Zinc Deposition Behaviors by the Conditioner of PAN Separator for Zincâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	130
52	Organic–Inorganic Hybrid Cathode with Dual Energyâ€Storage Mechanism for Ultrahighâ€Rate and Ultralongâ€Life Aqueous Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2105452.	11.1	129
53	Prospects of Electrode Materials and Electrolytes for Practical Potassiumâ€Based Batteries. Small Methods, 2021, 5, e2101131.	4.6	129
54	lssues and Opportunities Facing Aqueous Mn ²⁺ /MnO ₂ â€based Batteries. ChemSusChem, 2022, 15, .	3.6	129

#	Article	IF	CITATIONS
55	Cyclic-anion salt for high-voltage stable potassium-metal batteries. National Science Review, 2022, 9, .	4.6	123
56	Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Nano-Micro Letters, 2019, 11, 69.	14.4	122
57	Electrochemical Activation of Manganeseâ€Based Cathode in Aqueous Zincâ€ion Electrolyte. Advanced Functional Materials, 2020, 30, 2002711.	7.8	120
58	Chemical Synthesis of 3D Grapheneâ€Like Cages for Sodiumâ€lon Batteries Applications. Advanced Energy Materials, 2017, 7, 1700797.	10.2	113
59	Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochimica Acta, 2015, 176, 1-9.	2.6	110
60	Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Research, 2018, 11, 449-463.	5.8	108
61	Highly Reversible Phase Transition Endows V ₆ O ₁₃ with Enhanced Performance as Aqueous Zinc″on Battery Cathode. Energy Technology, 2019, 7, 1900022.	1.8	108
62	Mechanistic Insights of Mg ²⁺ â€Electrolyte Additive for Highâ€Energy and Longâ€Life Zincâ€lon Hybrid Capacitors. Advanced Energy Materials, 2021, 11, 2101158.	10.2	108
63	Nb ₂ O ₅ quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. Journal of Materials Chemistry A, 2016, 4, 17838-17847.	5.2	107
64	Nitrogen doped hollow MoS 2 /C nanospheres as anode for long-life sodium-ion batteries. Chemical Engineering Journal, 2017, 327, 522-529.	6.6	101
65	Stabilization of Zn Metal Anode through Surface Reconstruction of a Ceriumâ€Based Conversion Film. Advanced Functional Materials, 2021, 31, 2103227.	7.8	97
66	Oxygen-Incorporated MoS ₂ Nanosheets with Expanded Interlayers for Hydrogen Evolution Reaction and Pseudocapacitor Applications. ACS Applied Materials & Interfaces, 2016, 8, 33681-33689.	4.0	94
67	Regulating Solvent Molecule Coordination with KPF ₆ for Superstable Graphite Potassium Anodes. ACS Nano, 2021, 15, 9167-9175.	7.3	89
68	Eutectic electrolyte based on <i>N</i> -methylacetamide for highly reversible zinc–iodine battery. Energy and Environmental Science, 2022, 15, 1192-1200.	15.6	89
69	Hydrated Eutectic Electrolyte with Ligandâ€Oriented Solvation Shell to Boost the Stability of Zinc Battery. Advanced Functional Materials, 2022, 32, .	7.8	87
70	Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Materialia, 2019, 180, 51-59.	3.8	86
71	High-performance sodium-ion batteries and flexible sodium-ion capacitors based on Sb ₂ X ₃ (X = O, S)/carbon fiber cloth. Journal of Materials Chemistry A, 2017, 5, 9169-9176.	5.2	84
72	Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. Journal of Materials Chemistry A, 2019, 7, 7355-7359.	5.2	84

#	Article	IF	CITATIONS
73	PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties. CrystEngComm, 2013, 15, 4998.	1.3	83
74	Hydrogen Bondâ€Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	82
75	Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Znâ€ion batteries. , 2020, 2, 294-301.		80
76	Highly Dispersed Cobalt Nanoparticles Embedded in Nitrogen-Doped Graphitized Carbon for Fast and Durable Potassium Storage. Nano-Micro Letters, 2021, 13, 21.	14.4	80
77	lon migration and defect effect of electrode materials in multivalent-ion batteries. Progress in Materials Science, 2022, 125, 100911.	16.0	79
78	Polyimide/metal-organic framework hybrid for high performance Al - Organic battery. Energy Storage Materials, 2020, 31, 58-63.	9.5	78
79	Structural Modification of V ₂ O ₅ as High-Performance Aqueous Zinc-Ion Battery Cathode. Journal of the Electrochemical Society, 2019, 166, A480-A486.	1.3	75
80	Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced Potassium Ion Batteries. , 2020, 2, 853-860.		70
81	Weak Cation–Solvent Interactions in Etherâ€Based Electrolytes Stabilizing Potassiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	70
82	Manipulating Ion Concentration to Boost Twoâ€Electron Mn ⁴⁺ /Mn ²⁺ Redox Kinetics through a Colloid Electrolyte for Highâ€Capacity Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	65
83	Electrochemical Study of Poly(2,6â€Anthraquinonyl Sulfide) as Cathode for Alkaliâ€Metalâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002780.	10.2	60
84	Controllable synthesis of highly uniform cuboid-shape MOFs and their derivatives for lithium-ion battery and photocatalysis applications. Chemical Engineering Journal, 2017, 322, 281-292.	6.6	59
85	Chrysanthemum-like Bi2S3 nanostructures: A promising anode material for lithium-ion batteries and sodium-ion batteries. Journal of Alloys and Compounds, 2017, 715, 432-437.	2.8	58
86	Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2019, 801, 82-89.	2.8	56
87	Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries. Journal of Power Sources, 2015, 275, 694-701.	4.0	55
88	Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes. Chemical Science, 2022, 13, 726-736.	3.7	54
89	Surface organic nitrogen-doping disordered biomass carbon materials with superior cycle stability in the sodium-ion batteries. Journal of Power Sources, 2022, 522, 230994.	4.0	54
90	Fabrication of an Inexpensive Hydrophilic Bridge on a Carbon Substrate and Loading Vanadium Sulfides for Flexible Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36676-36684.	4.0	49

#	Article	IF	CITATIONS
91	Interlayer Doping in Layered Vanadium Oxides for Lowâ€cost Energy Storage: Sodiumâ€ion Batteries and Aqueous Zincâ€ion Batteries. ChemNanoMat, 2020, 6, 1553-1566.	1.5	49
92	Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Research, 2020, 13, 3330-3337.	5.8	49
93	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
94	Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage. Science Bulletin, 2020, 65, 2014-2021.	4.3	47
95	Design Strategies for Highâ€Energyâ€Đensity Aqueous Zinc Batteries. Angewandte Chemie, 2022, 134, .	1.6	47
96	Synthesis of mesoporous β-Na0.33V2O5 with enhanced electrochemical performance for lithium ion batteries. Electrochimica Acta, 2014, 130, 119-126.	2.6	45
97	Ultrathin Na _{1.1} V ₃ O _{7.9} Nanobelts with Superior Performance as Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8704-8709.	4.0	43
98	Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. Carbon, 2017, 122, 82-91.	5.4	43
99	Weak Cation–Solvent Interactions in Etherâ€Based Electrolytes Stabilizing Potassiumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	43
100	Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Materials Today Energy, 2021, 20, 100626.	2.5	42
101	Engineering Ion Diffusion by CoS@SnS Heterojunction for Ultrahigh-Rate and Stable Potassium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16379-16385.	4.0	42
102	Facile synthesis of Ag/AgVO3 hybrid nanorods with enhanced electrochemical performance as cathode material for lithium batteries. Journal of Power Sources, 2013, 228, 178-184.	4.0	41
103	Highly reversible zinc-ion battery enabled by suppressing vanadium dissolution through inorganic Zn2+ conductor electrolyte. Nano Energy, 2021, 90, 106621.	8.2	40
104	Crossâ€Linked Hollow Graphitic Carbon as Low ost and Highâ€Performance Anode for Potassium Ion Batteries. Energy and Environmental Materials, 2021, 4, 451-457.	7.3	39
105	SbVO4 based high capacity potassium anode: a combination of conversion and alloying reactions. Science China Chemistry, 2021, 64, 238-244.	4.2	39
106	Na0.282V2O5: A high-performance cathode material for rechargeable lithium batteries and sodium batteries. Journal of Power Sources, 2016, 328, 241-249.	4.0	37
107	Yolk–Shell P3â€Type K _{0.5} [Mn _{0.85} Ni _{0.1} Co _{0.05}]O ₂ : A Lowâ€Cost Cathode for Potassiumâ€lon Batteries. Energy and Environmental Materials, 2022, 5, 261-269.	7.3	36
108	Guest Pre-intercalation Strategy to Boost the Electrochemical Performance of Aqueous Zinc-ion Battery Cathodes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	34

#	Article	IF	CITATIONS
109	Hydrothermal synthesis of Ag/Ĵ²-AgVO3 nanobelts with enhanced performance as a cathode material for lithium batteries. CrystEngComm, 2013, 15, 9869.	1.3	33
110	The general synthesis of Ag nanoparticles anchored on silver vanadium oxides: towards high performance cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11029-11034.	5.2	33
111	General synthesis of three-dimensional alkali metal vanadate aerogels with superior lithium storage properties. Journal of Materials Chemistry A, 2016, 4, 14408-14415.	5.2	33
112	Layered Superconductor Cu _{0.11} TiSe ₂ as a High‣table K athode. Advanced Functional Materials, 2022, 32, 2109893.	7.8	30
113	Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode. Journal of Energy Chemistry, 2019, 37, 172-175.	7.1	29
114	Three-dimensional Zn3V3O8/carbon fiber cloth composites as binder-free anode for lithium-ion batteries. Electrochimica Acta, 2017, 246, 97-105.	2.6	28
115	Trimetallic Hybrid Sulfides Embedded in Nitrogen-Doped Carbon Nanocubes as an Advanced Sodium-Ion Battery Anode. ACS Applied Energy Materials, 2019, 2, 4567-4575.	2.5	28
116	β-FeOOH: a new anode for potassium-ion batteries. Chemical Communications, 2020, 56, 3713-3716.	2.2	28
117	Development and challenges of aqueous rechargeable zinc batteries. Chinese Science Bulletin, 2020, 65, 3562-3584.	0.4	28
118	Synergetic Effect of Alkali‣ite Substitution and Oxygen Vacancy Boosting Vanadate Cathode for Super‣table Potassium and Zinc Storage. Advanced Functional Materials, 2022, 32, .	7.8	28
119	Construction of V2O5/NaV6O15 biphase composites as aqueous zinc-ion battery cathode. Journal of Electroanalytical Chemistry, 2019, 847, 113246.	1.9	27
120	Architecting a Hydrated Ca _{0.24} V ₂ O ₅ Cathode with a Facile Desolvation Interface for Superior-Performance Aqueous Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60035-60045.	4.0	26
121	Rational Design and Synthesis of Li ₃ V ₂ (PO ₄) ₃ /C Nanocomposites As High-Performance Cathodes for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7250-7256.	3.2	25
122	Insights into Metal/Metalloid-Based Alloying Anodes for Potassium Ion Batteries. , 2021, 3, 1572-1598.		25
123	Progress and prospect of the zinc–iodine battery. Current Opinion in Electrochemistry, 2021, 30, 100761.	2.5	24
124	Copper-Stabilized Pâ€22-Type Layered Manganese Oxide Cathodes for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58665-58673.	4.0	24
125	Nb2O5microstructures: a high-performance anode for lithium ion batteries. Nanotechnology, 2016, 27, 46LT01.	1.3	23
126	Structureâ€Optimized Phosphorene for Superâ€Stable Potassium Storage. Advanced Functional Materials, 2022, 32, .	7.8	23

#	Article	IF	CITATIONS
127	Facile synthesis of β-AgVO3 nanorods as cathode for primary lithium batteries. Materials Letters, 2012, 74, 176-179.	1.3	22
128	Hydrothermal synthesis of sodium vanadate nanobelts as high-performance cathode materials for lithium batteries. Journal of Power Sources, 2016, 325, 383-390.	4.0	22
129	Synergistic chemical and electrochemical strategy for high-performance Zn//MnO2 batteries. Chinese Chemical Letters, 2023, 34, 107493.	4.8	21
130	Pseudocapacitance-dominated zinc storage enabled by nitrogen-doped carbon stabilized amorphous vanadyl phosphate. Chemical Engineering Journal, 2021, 426, 131868.	6.6	20
131	Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries. Green Energy and Environment, 2023, 8, 1429-1436.	4.7	20
132	Facile synthesis of LiVO3 and its electrochemical behavior in rechargeable lithium batteries. Journal of Electroanalytical Chemistry, 2019, 853, 113505.	1.9	18
133	Fundamental Understanding and Effect of Anionic Chemistry in Zinc Batteries. Energy and Environmental Materials, 2022, 5, 186-200.	7.3	18
134	LiV3O8/Ag composite nanobelts with enhanced performance as cathode material for rechargeable lithium batteries. Journal of Alloys and Compounds, 2014, 583, 351-356.	2.8	17
135	Effect of crystalline structure on the electrochemical properties of K0.25V2O5 nanobelt for fast Li insertion. Electrochimica Acta, 2016, 218, 199-207.	2.6	17
136	Electrochemical performance of AlV3O9 nanoflowers for lithium ion batteries application. Journal of Alloys and Compounds, 2017, 723, 92-99.	2.8	17
137	Facilitating Phase Evolution for a High-Energy-Efficiency, Low-Cost O3-Type Na _{<i>x</i>} Cu _{0.18} Fe _{0.3} Mn _{0.52} O ₂ Sodium Ion Battery Cathode. Inorganic Chemistry, 2020, 59, 13792-13800.	1.9	15
138	Synthesis of K0.25V2O5 hierarchical microspheres as a high-rate and long-cycle cathode for lithium metal batteries. Journal of Alloys and Compounds, 2019, 772, 852-860.	2.8	14
139	Facile synthesis of belt-like Ag1.2V3O8 with excellent stability for rechargeable lithium batteries. Journal of Power Sources, 2013, 233, 304-308.	4.0	13
140	Hydrothermal synthesis and electrochemical performance of novel channel-structured β-Ag0.33V2O5 nanorods. Materials Letters, 2014, 116, 389-392.	1.3	13
141	Facile synthesis of rod-like Ag0.33V2O5 crystallites with enhanced cyclic stability for lithium batteries. Materials Letters, 2013, 109, 92-95.	1.3	12
142	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	12
143	CircHIPK3: Key Player in Pathophysiology and Potential Diagnostic and Therapeutic Tool. Frontiers in Medicine, 2021, 8, 615417.	1.2	11
144	Sodiumâ€lon Batteries: Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€lon Battery Anode (Adv. Energy Mater. 19/2018). Advanced Energy Materials, 2018, 8, 1870092.	10.2	9

#	Article	IF	CITATIONS
145	Template-free synthesis of highly porous V ₂ O ₅ cuboids with enhanced performance for lithium ion batteries. Nanotechnology, 2016, 27, 305404.	1.3	8
146	Superstable potassium metal batteries with a controllable internal electric field. Fundamental Research, 2023, 3, 813-821.	1.6	5
147	Facile synthesis of Cu3V2O7(OH)2·2H2O as cathode for primary lithium batteries. Materials Letters, 2013, 99, 94-96.	1.3	4
148	Influence of PVP on Solvothermal Synthesized Fe ₃ O ₄ /Graphene Composites as Anodes for Lithium-ion Batteries. Electrochemistry, 2015, 83, 619-623.	0.6	4
149	Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration. Nano Research, 2021, 14, 2867-2874.	5.8	3
150	Alkaliâ€Metalâ€Ion Batteries: Electrochemical Study of Poly(2,6â€Anthraquinonyl Sulfide) as Cathode for Alkaliâ€Metalâ€Ion Batteries (Adv. Energy Mater. 48/2020). Advanced Energy Materials, 2020, 10, 2070198.	10.2	2
151	Back Cover Image. InformaÄnÃ-MateriÃily, 2021, 3, .	8.5	1
152	GPP-based design of soft MMSE MIMO detection. , 2012, , .		0