Thomas Geisbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7591989/publications.pdf Version: 2024-02-01

		19657	25787
166	13,344	61	108
papers	citations	h-index	g-index
173 all docs	173 docs citations	173 times ranked	9438 citing authors

#	Article	IF	CITATIONS
1	Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell, 2022, 185, 995-1007.e18.	28.9	26
2	A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200065119.	7.1	27
3	Combination therapy with remdesivir and monoclonal antibodies protects nonhuman primates against advanced Sudan virus disease. JCI Insight, 2022, 7, .	5.0	18
4	LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Reports, 2022, 39, 110812.	6.4	287
5	A highly attenuated Vesiculovax vaccine rapidly protects nonhuman primates against lethal Marburg virus challenge. PLoS Neglected Tropical Diseases, 2022, 16, e0010433.	3.0	20
6	Natural history of <i>Sudan ebolavirus</i> infection in rhesus and cynomolgus macaques. Emerging Microbes and Infections, 2022, 11, 1635-1646.	6.5	15
7	Reversion of Ebolavirus Disease from a Single Intramuscular Injection of a Pan-Ebolavirus Immunotherapeutic. Pathogens, 2022, 11, 655.	2.8	5
8	Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nature Immunology, 2021, 22, 86-98.	14.5	162
9	Transcriptional Analysis of Lymphoid Tissues from Infected Nonhuman Primates Reveals the Basis for Attenuation and Immunogenicity of an Ebola Virus Encoding a Mutant VP35 Protein. Journal of Virology, 2021, 95, .	3.4	2
10	A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. Npj Vaccines, 2021, 6, 23.	6.0	45
11	Prominent Neutralizing Antibody Response Targeting the Ebolavirus Glycoprotein Subunit Interface Elicited by Immunization. Journal of Virology, 2021, 95, .	3.4	6
12	Therapy for Argentine hemorrhagic fever in nonhuman primates with a humanized monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
13	Combination therapy protects macaques against advanced Marburg virus disease. Nature Communications, 2021, 12, 1891.	12.8	37
14	Use of convalescent serum reduces severity of COVID-19 in nonhuman primates. Cell Reports, 2021, 34, 108837.	6.4	23
15	The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	347
16	Ultrasensitive point-of-care immunoassay for secreted glycoprotein detects Ebola infection earlier than PCR. Science Translational Medicine, 2021, 13, .	12.4	22
17	Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nature Structural and Molecular Biology, 2021, 28, 426-434.	8.2	33
18	Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell, 2021, 184, 3486-3501.e21.	28.9	39

#	Article	IF	CITATIONS
19	Ebola vaccine–induced protection in nonhuman primates correlates with antibody specificity and Fc-mediated effects. Science Translational Medicine, 2021, 13, .	12.4	22
20	Recombinant Protein Filovirus Vaccines Protect Cynomolgus Macaques From Ebola, Sudan, and Marburg Viruses. Frontiers in Immunology, 2021, 12, 703986.	4.8	23
21	<i>Bundibugyo ebolavirus</i> Survival Is Associated with Early Activation of Adaptive Immunity and Reduced Myeloid-Derived Suppressor Cell Signaling. MBio, 2021, 12, e0151721.	4.1	12
22	Single dose rVSVΔG-JUNVGP vaccine protects guinea pigs against lethal Junin virus challenge. Npj Vaccines, 2021, 6, 96.	6.0	1
23	Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Reports, 2021, 36, 109628.	6.4	23
24	A recombinant Cedar virus based high-throughput screening assay for henipavirus antiviral discovery. Antiviral Research, 2021, 193, 105084.	4.1	5
25	Comparison of Zaire and Bundibugyo Ebolavirus Polymerase Complexes and Susceptibility to Antivirals through a Newly Developed Bundibugyo Minigenome System. Journal of Virology, 2021, 95, e0064321.	3.4	1
26	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	28.9	21
27	Development of a SARS-CoV-2 Vaccine Candidate Using Plant-Based Manufacturing and a Tobacco Mosaic Virus-like Nano-Particle. Vaccines, 2021, 9, 1347.	4.4	37
28	Current state of Ebola virus vaccines: A snapshot. PLoS Pathogens, 2021, 17, e1010078.	4.7	59
29	A Lethal Aerosol Exposure Model of Nipah Virus Strain Bangladesh in African Green Monkeys. Journal of Infectious Diseases, 2020, 221, S431-S435.	4.0	13
30	An Intranasal Exposure Model of Lethal Nipah Virus Infection in African Green Monkeys. Journal of Infectious Diseases, 2020, 221, S414-S418.	4.0	17
31	Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Scientific Reports, 2020, 10, 16030.	3.3	15
32	Potent Henipavirus Neutralization by Antibodies Recognizing Diverse Sites on Hendra and Nipah Virus Receptor Binding Protein. Cell, 2020, 183, 1536-1550.e17.	28.9	28
33	Neutralizing Antibodies against Crimean–Congo Hemorrhagic Fever Virus Derived from a Human Survivor. Proceedings (mdpi), 2020, 50, .	0.2	0
34	Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment. Nature Communications, 2020, 11, 3736.	12.8	11
35	Crimean-Congo hemorrhagic fever virus strains Hoti and Afghanistan cause viremia and mild clinical disease in cynomolgus monkeys. PLoS Neglected Tropical Diseases, 2020, 14, e0008637.	3.0	18
36	Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still present in the early convalescence phase. Virology Journal, 2020, 17, 125.	3.4	54

#	Article	IF	CITATIONS
37	Early Transcriptional Changes within Liver, Adrenal Gland, and Lymphoid Tissues Significantly Contribute to Ebola Virus Pathogenesis in Cynomolgus Macaques. Journal of Virology, 2020, 94, .	3.4	8
38	Structure and Characterization of Crimean-Congo Hemorrhagic Fever Virus GP38. Journal of Virology, 2020, 94, .	3.4	28
39	Ebola. New England Journal of Medicine, 2020, 382, 1832-1842.	27.0	128
40	Immune correlates of postexposure vaccine protection against Marburg virus. Scientific Reports, 2020, 10, 3071.	3.3	22
41	Resistance of Cynomolgus Monkeys to Nipah and Hendra Virus Disease Is Associated With Cell-Mediated and Humoral Immunity. Journal of Infectious Diseases, 2020, 221, S436-S447.	4.0	21
42	Rational design of universal immunotherapy for TfR1-tropic arenaviruses. Nature Communications, 2020, 11, 67.	12.8	16
43	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	14.3	71
44	A Cross-Reactive Humanized Monoclonal Antibody Targeting Fusion Glycoprotein Function Protects Ferrets Against Lethal Nipah Virus and Hendra Virus Infection. Journal of Infectious Diseases, 2020, 221, S471-S479.	4.0	39
45	Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus Neutralization. Cell, 2019, 178, 1004-1015.e14.	28.9	39
46	Antibody therapy for Lassa fever. Current Opinion in Virology, 2019, 37, 97-104.	5.4	28
47	The FDA-Approved Oral Drug Nitazoxanide Amplifies Host Antiviral Responses and Inhibits Ebola Virus. IScience, 2019, 19, 1279-1290.	4.1	100
48	Use of reverse genetics to inform Ebola outbreak responses. Lancet Infectious Diseases, The, 2019, 19, 925-927.	9.1	3
49	Antagonism of STAT1 by Nipah virus P gene products modulates disease course but not lethal outcome in the ferret model. Scientific Reports, 2019, 9, 16710.	3.3	19
50	A VP35 Mutant Ebola Virus Lacks Virulence but Can Elicit Protective Immunity to Wild-Type Virus Challenge. Cell Reports, 2019, 28, 3032-3046.e6.	6.4	22
51	Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Scientific Reports, 2019, 9, 7755.	3.3	43
52	Use of Single-Injection Recombinant Vesicular Stomatitis Virus Vaccine to Protect Nonhuman Primates Against Lethal Nipah Virus Disease. Emerging Infectious Diseases, 2019, 25, 1144-1152.	4.3	41
53	An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nature Structural and Molecular Biology, 2019, 26, 980-987.	8.2	69
54	A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host and Microbe, 2019, 25, 49-58.e5.	11.0	82

#	Article	IF	CITATIONS
55	Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. Journal of Clinical Investigation, 2019, 130, 539-551.	8.2	40
56	Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Scientific Reports, 2018, 8, 5939.	3.3	39
57	Post-exposure treatments for Ebola and Marburg virus infections. Nature Reviews Drug Discovery, 2018, 17, 413-434.	46.4	104
58	Predicting outcome and improving treatment for Lassa fever. Lancet Infectious Diseases, The, 2018, 18, 594-595.	9.1	11
59	Single-Dose Trivalent VesiculoVax Vaccine Protects Macaques from Lethal Ebolavirus and Marburgvirus Challenge. Journal of Virology, 2018, 92, .	3.4	34
60	Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S565-S573.	4.0	13
61	Small animal models of filovirus disease: recent advances and future directions. Expert Opinion on Drug Discovery, 2018, 13, 1027-1040.	5.0	19
62	Postexposure Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against High and Low Doses of Marburg Virus Variant Angola in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S582-S587.	4.0	28
63	Role of Antibodies in Protection Against Ebola Virus in Nonhuman Primates Immunized With Three Vaccine Platforms. Journal of Infectious Diseases, 2018, 218, S553-S564.	4.0	22
64	Comparative Transcriptomics in Ebola Makona-Infected Ferrets, Nonhuman Primates, and Humans. Journal of Infectious Diseases, 2018, 218, S486-S495.	4.0	15
65	A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates. PLoS ONE, 2018, 13, e0192312.	2.5	64
66	Persistence of Ebola virus RNA in seminal fluid. The Lancet Global Health, 2017, 5, e12-e13.	6.3	1
67	The gap between animal and human Ebola virus disease. Future Virology, 2017, 12, 61-65.	1.8	1
68	Disposable cartridge platform for rapid detection of viral hemorrhagic fever viruses. Lab on A Chip, 2017, 17, 917-925.	6.0	18
69	Assessment of the potential for host-targeted iminosugars UV-4 and UV-5 activity against filovirus infections inÂvitro and inÂvivo. Antiviral Research, 2017, 138, 22-31.	4.1	17
70	Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Science Translational Medicine, 2017, 9, .	12.4	64
71	First Ebola virus vaccine to protect human beings?. Lancet, The, 2017, 389, 479-480.	13.7	9
72	Infection with the Makona variant results in a delayed and distinct host immune response compared to previous Ebola virus variants. Scientific Reports, 2017, 7, 9730.	3.3	35

#	Article	IF	CITATIONS
73	Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nature Medicine, 2017, 23, 1146-1149.	30.7	95
74	Neutralizing the Threat: Pan-Ebolavirus Antibodies Close the Loop. Trends in Molecular Medicine, 2017, 23, 669-671.	6.7	12
75	Transcriptome Analysis of Circulating Immune Cell Subsets Highlight the Role of Monocytes in Zaire Ebola Virus Makona Pathogenesis. Frontiers in Immunology, 2017, 8, 1372.	4.8	49
76	Evaluation of Medical Countermeasures Against Ebolaviruses in Nonhuman Primate Models. Methods in Molecular Biology, 2017, 1628, 293-307.	0.9	3
77	siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease. Journal of Clinical Investigation, 2017, 127, 4437-4448.	8.2	26
78	An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. Journal of Infectious Diseases, 2016, 214, S110-S121.	4.0	34
79	Isolation and Characterization of a Novel Gammaherpesvirus from a Microbat Cell Line. MSphere, 2016, 1, .	2.9	16
80	Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nature Communications, 2016, 7, 11544.	12.8	148
81	The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses. Journal of Virology, 2016, 90, 3086-3092.	3.4	133
82	Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets. Journal of Virology, 2016, 90, 6326-6343.	3.4	41
83	Ebola virus vaccines $\hat{a} \in $ reality or fiction?. Expert Review of Vaccines, 2016, 15, 1421-1430.	4.4	29
84	Single-Vector, Single-Injection Recombinant Vesicular Stomatitis Virus Vaccines Against High-Containment Viruses. Methods in Molecular Biology, 2016, 1403, 295-311.	0.9	18
85	Inhibition of the host antiviral response by Nipah virus: current understanding and future perspectives. Future Virology, 2016, 11, 331-344.	1.8	12
86	Monoclonal antibody therapy for Junin virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4458-4463.	7.1	50
87	Analytical Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus Infection. Journal of Infectious Diseases, 2016, 214, S210-S217.	4.0	35
88	Treatment of Lassa virus infection in outbred guinea pigs with first-in-classÂhuman monoclonal antibodies. Antiviral Research, 2016, 133, 218-222.	4.1	57
89	Passive Immunotherapy: Assessment of Convalescent Serum Against Ebola Virus Makona Infection in Nonhuman Primates. Journal of Infectious Diseases, 2016, 214, S367-S374.	4.0	36
90	Field Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus Infection. Journal of Infectious Diseases, 2016, 214, S203-S209.	4.0	29

#	Article	IF	CITATIONS
91	The Domestic Ferret (<i>Mustela putorius furo</i>) as a Lethal Infection Model for 3 Species of <i>Ebolavirus</i> . Journal of Infectious Diseases, 2016, 214, 565-569.	4.0	80
92	Molecular Diagnostic Field Test for Point-of-Care Detection of Ebola Virus Directly From Blood. Journal of Infectious Diseases, 2016, 214, S234-S242.	4.0	30
93	Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy. Scientific Reports, 2016, 6, 30916.	3.3	121
94	Rescue of non-human primates from advanced Sudan ebolavirus infection with lipid encapsulated siRNA. Nature Microbiology, 2016, 1, 16142.	13.3	52
95	Oral and Conjunctival Exposure of Nonhuman Primates to Low Doses of Ebola Makona Virus. Journal of Infectious Diseases, 2016, 214, S263-S267.	4.0	26
96	Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway. Journal of Virology, 2016, 90, 2372-2387.	3.4	56
97	Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins. Cell Reports, 2016, 14, 1632-1640.	6.4	75
98	The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Scientific Reports, 2015, 5, 14775.	3.3	91
99	Development of Prototype Filovirus Recombinant Antigen Immunoassays. Journal of Infectious Diseases, 2015, 212, S359-S367.	4.0	30
100	VACCINES AND ANTIVIRALS FOR FILOVIRUSES. , 2015, , 587-620.		2
101	Vaccination With a Highly Attenuated Recombinant Vesicular Stomatitis Virus Vector Protects Against Challenge With a Lethal Dose of Ebola Virus. Journal of Infectious Diseases, 2015, 212, S443-S451.	4.0	46
102	Modeling the Disease Course of <i>Zaire ebolavirus</i> Infection in the Outbred Guinea Pig. Journal of Infectious Diseases, 2015, 212, S305-S315.	4.0	43
103	Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection: Table 1 Journal of Infectious Diseases, 2015, 212, S91-S97.	4.0	116
104	A Recombinant Vesicular Stomatitis Virus-Based Lassa Fever Vaccine Protects Guinea Pigs and Macaques against Challenge with Geographically and Genetically Distinct Lassa Viruses. PLoS Neglected Tropical Diseases, 2015, 9, e0003736.	3.0	109
105	Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature, 2015, 521, 362-365.	27.8	226
106	A Single-Vector, Single-Injection Trivalent Filovirus Vaccine: Proof of Concept Study in Outbred Guinea Pigs. Journal of Infectious Diseases, 2015, 212, S384-S388.	4.0	34
107	Emergency Treatment for Exposure to Ebola Virus. JAMA - Journal of the American Medical Association, 2015, 313, 1221.	7.4	8
108	Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus. Nature, 2015. 520. 688-691.	27.8	84

#	Article	IF	CITATIONS
109	Lack of Marburg Virus Transmission From Experimentally Infected to Susceptible In-Contact Egyptian Fruit Bats. Journal of Infectious Diseases, 2015, 212, S109-S118.	4.0	50
110	The immunomodulating V and W proteins of Nipah virus determine disease course. Nature Communications, 2015, 6, 7483.	12.8	78
111	Safety of Recombinant VSV–Ebola Virus Vaccine Vector in Pigs. Emerging Infectious Diseases, 2015, 21, 702-704.	4.3	27
112	<i>Stat1</i> -Deficient Mice Are Not an Appropriate Model for Efficacy Testing of Recombinant Vesicular Stomatitis Virus–Based Filovirus Vaccines. Journal of Infectious Diseases, 2015, 212, S404-S409.	4.0	24
113	Comparison of the Pathogenesis of the Angola and Ravn Strains of Marburg Virus in the Outbred Guinea Pig Model. Journal of Infectious Diseases, 2015, 212, S258-S270.	4.0	38
114	Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. Journal of Clinical Investigation, 2015, 125, 3241-3255.	8.2	67
115	Vesicular Stomatitis Virus–based Vaccines against Lassa and Ebola Viruses. Emerging Infectious Diseases, 2015, 21, 305-7.	4.3	72
116	Durability of a Vesicular Stomatitis Virus-Based Marburg Virus Vaccine in Nonhuman Primates. PLoS ONE, 2014, 9, e94355.	2.5	67
117	Transcriptional Correlates of Disease Outcome in Anticoagulant-Treated Non-Human Primates Infected with Ebolavirus. PLoS Neglected Tropical Diseases, 2014, 8, e3061.	3.0	22
118	Lassa Fever in Post-Conflict Sierra Leone. PLoS Neglected Tropical Diseases, 2014, 8, e2748.	3.0	172
119	Protection Against Lethal Marburg Virus Infection Mediated by Lipid Encapsulated Small Interfering RNA. Journal of Infectious Diseases, 2014, 209, 562-570.	4.0	44
120	Therapeutic Treatment of Nipah Virus Infection in Nonhuman Primates with a Neutralizing Human Monoclonal Antibody. Science Translational Medicine, 2014, 6, 242ra82.	12.4	117
121	Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA. Science Translational Medicine, 2014, 6, 250ra116.	12.4	69
122	The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway. Cell Reports, 2014, 6, 1017-1025.	6.4	95
123	Deep Sequencing Identifies Noncanonical Editing of Ebola and Marburg Virus RNAs in Infected Cells. MBio, 2014, 5, e02011.	4.1	70
124	Ebola therapy protects severely ill monkeys. Nature, 2014, 514, 41-43.	27.8	14
125	Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virology Journal, 2013, 10, 353.	3.4	64
126	Vesicular Stomatitis Virus-Based Vaccines Protect Nonhuman Primates against Bundibugyo ebolavirus. PLoS Neglected Tropical Diseases, 2013, 7, e2600.	3.0	83

#	Article	IF	CITATIONS
127	Antibodies are necessary for rVSV/ZEBOV-GP–mediated protection against lethal Ebola virus challenge in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1893-1898.	7.1	236
128	Animal Challenge Models of Henipavirus Infection and Pathogenesis. Current Topics in Microbiology and Immunology, 2012, 359, 153-177.	1.1	70
129	A Hendra Virus G Glycoprotein Subunit Vaccine Protects African Green Monkeys from Nipah Virus Challenge. Science Translational Medicine, 2012, 4, 146ra107.	12.4	121
130	Recombinant Vesicular Stomatitis Virus Vaccine Vectors Expressing Filovirus Glycoproteins Lack Neurovirulence in Nonhuman Primates. PLoS Neglected Tropical Diseases, 2012, 6, e1567.	3.0	95
131	CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nature Medicine, 2011, 17, 1128-1131.	30.7	200
132	Pathogenesis of lassa fever in cynomolgus macaques. Virology Journal, 2011, 8, 205.	3.4	101
133	A Neutralizing Human Monoclonal Antibody Protects African Green Monkeys from Hendra Virus Challenge. Science Translational Medicine, 2011, 3, 105ra103.	12.4	135
134	Recombinant Vesicular Stomatitis Virus–Based Vaccines Against Ebola and Marburg Virus Infections. Journal of Infectious Diseases, 2011, 204, S1075-S1081.	4.0	183
135	Pathogenesis of Marburg Hemorrhagic Fever in Cynomolgus Macaques. Journal of Infectious Diseases, 2011, 204, S1021-S1031.	4.0	80
136	Recombinant Adenovirus Serotype 26 (Ad26) and Ad35 Vaccine Vectors Bypass Immunity to Ad5 and Protect Nonhuman Primates against Ebolavirus Challenge. Journal of Virology, 2011, 85, 4222-4233.	3.4	176
137	Single Immunization With a Monovalent Vesicular Stomatitis Virus–Based Vaccine Protects Nonhuman Primates Against Heterologous Challenge With Bundibugyo ebolavirus. Journal of Infectious Diseases, 2011, 204, S1082-S1089.	4.0	52
138	Prospects for immunisation against Marburg and Ebola viruses. Reviews in Medical Virology, 2010, 20, 344-357.	8.3	69
139	Postexposure Treatment of Marburg Virus Infection. Emerging Infectious Diseases, 2010, 16, 1119-1122.	4.3	78
140	Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet, The, 2010, 375, 1896-1905.	13.7	414
141	Vector Choice Determines Immunogenicity and Potency of Genetic Vaccines against Angola Marburg Virus in Nonhuman Primates. Journal of Virology, 2010, 84, 10386-10394.	3.4	64
142	Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection. PLoS ONE, 2010, 5, e10690.	2.5	145
143	Single-Injection Vaccine Protects Nonhuman Primates against Infection with Marburg Virus and Three Species of Ebola Virus. Journal of Virology, 2009, 83, 7296-7304.	3.4	241

Responses to Ebola and Marburg Virus Infections. , 2009, , 371-390.

9

#	Article	IF	CITATIONS
145	Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine, 2008, 26, 6894-6900.	3.8	179
146	Vesicular Stomatitis Virus-Based Ebola Vaccine Is Well-Tolerated and Protects Immunocompromised Nonhuman Primates. PLoS Pathogens, 2008, 4, e1000225.	4.7	177
147	Effective Post-Exposure Treatment of Ebola Infection. PLoS Pathogens, 2007, 3, e2.	4.7	246
148	Neutralizing Antibody Fails to Impact the Course of Ebola Virus Infection in Monkeys. PLoS Pathogens, 2007, 3, e9.	4.7	210
149	Dedication: Jim Orzechowski (1944–2003) and Michael Kiley (1942–2004). Journal of Infectious Diseases, 2007, 196, S127-S128.	4.0	1
150	Postexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessment. Lancet, The, 2006, 367, 1399-1404.	13.7	166
151	Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine. Journal of Virology, 2006, 80, 9659-9666.	3.4	112
152	Development of a New Vaccine for the Prevention of Lassa Fever. PLoS Medicine, 2005, 2, e183.	8.4	223
153	Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Medicine, 2005, 11, 786-790.	30.7	607
154	Ebola virus: The role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. International Journal of Biochemistry and Cell Biology, 2005, 37, 1560-1566.	2.8	244
155	Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Reviews in Molecular Medicine, 2004, 6, 1-24.	3.9	109
156	Exotic emerging viral diseases: progress and challenges. Nature Medicine, 2004, 10, S110-S121.	30.7	411
157	Microscopy in the Hot Zone: From the Discovery of Ebola Virus to a Possible Treatment. Microscopy and Microanalysis, 2004, 10, 234-235.	0.4	0
158	Detection and identification of Variola virus in fixed human tissue after prolonged archival storage. Laboratory Investigation, 2004, 84, 41-48.	3.7	1
159	Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques. American Journal of Pathology, 2003, 163, 2347-2370.	3.8	543
160	Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet, The, 2003, 362, 1953-1958.	13.7	362
161	Towards a vaccine against Ebola virus. Expert Review of Vaccines, 2003, 2, 777-789.	4.4	45
162	Mechanisms Underlying Coagulation Abnormalities in Ebola Hemorrhagic Fever: Overexpression of Tissue Factor in Primate Monocytes/Macrophages Is a Key Event. Journal of Infectious Diseases, 2003, 188, 1618-1629.	4.0	336

#	Article	IF	CITATIONS
163	Evidence against an Important Role for Infectivity-Enhancing Antibodies in Ebola Virus Infections. Virology, 2002, 293, 15-19.	2.4	22
164	Evaluation in Nonhuman Primates of Vaccines against Ebola Virus. Emerging Infectious Diseases, 2002, 8, 503-507.	4.3	230
165	The Pathology of Experimental Aerosolized Monkeypox Virus Infection in Cynomolgus Monkeys (Macaca fascicularis). Laboratory Investigation, 2001, 81, 1581-1600.	3.7	237
166	Apoptosis Induced In Vitro and In Vivo During Infection by Ebola and Marburg Viruses. Laboratory Investigation, 2000, 80, 171-186.	3.7	282