
Marc Anton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7591887/publications.pdf Version: 2024-02-01

MARC ANTON

#	Article	IF	CITATIONS
1	Emulsifiers modulate the extent of gastric lipolysis during the dynamic in vitro digestion of submicron chia oil/water emulsions with limited impact on the final extent of intestinal lipolysis. Food Hydrocolloids, 2022, 124, 107336.	5.6	5
2	Biochemical and physical–chemical characterisation of leaf proteins extracted from Cichorium endivia leaves. Food Chemistry, 2022, 381, 132254.	4.2	10
3	Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability. Food Research International, 2021, 150, 110759.	2.9	11
4	Loading of lutein in egg-sphingomyelin vesicles as lipid carriers: Thermotropic phase behaviour, structure of sphingosome membranes and lutein crystals. Food Research International, 2020, 138, 109770.	2.9	13
5	Rubisco: A promising plant protein to enrich wheat-based food without impairing dough viscoelasticity and protein polymerisation. Food Hydrocolloids, 2020, 109, 106101.	5.6	13
6	Protein aggregates modulate the texture of emulsified and acidified acid milk gels. Food Hydrocolloids, 2019, 93, 176-188.	5.6	9
7	Studying the real-time interplay between triglyceride digestion and lipophilic micronutrient bioaccessibility using droplet microfluidics. 2 application to various oils and (pro)vitamins. Food Chemistry, 2019, 275, 661-667.	4.2	21
8	Studying the real-time interplay between triglyceride digestion and lipophilic micronutrient bioaccessibility using droplet microfluidics. 1 lab on a chip method. Food Chemistry, 2019, 275, 523-529.	4.2	22
9	Calcium Addition, pH, and High Hydrostatic Pressure Effects on Soybean Protein Isolates—Part 1: Colloidal Stability Improvement. Food and Bioprocess Technology, 2018, 11, 1125-1138.	2.6	22
10	Proteins for the future: A soft matter approach to link basic knowledge and innovative applications. Innovative Food Science and Emerging Technologies, 2018, 46, 18-28.	2.7	10
11	Determination of hydro-colloidal characteristics of milk protein aggregates using Asymmetrical Flow Field-Flow Fractionation coupled with Multiangle Laser Light Scattering and Differential Refractometer (AF4-MALLS-DRi). Food Hydrocolloids, 2018, 74, 197-206.	5.6	22
12	Calcium Addition, pH and High Hydrostatic Pressure Effects on Soybean Protein Isolates—Part 2: Emulsifying Properties. Food and Bioprocess Technology, 2018, 11, 2079-2093.	2.6	14
13	Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. International Journal of Biological Macromolecules, 2017, 97, 55-66.	3.6	59
14	Pasteurisation of liquid whole egg: Optimal heat treatments in relation to its functional, nutritional and allergenic properties. Journal of Food Engineering, 2017, 195, 137-149.	2.7	48
15	Effect of dry heat treatment of egg white powder on its functional, nutritional and allergenic properties. Journal of Food Engineering, 2017, 195, 40-51.	2.7	47
16	Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecological Economics, 2016, 126, 152-162.	2.9	199
17	The benefits of liposomes for chilling canine sperm for 4 days at 4 °C. Animal Reproduction Science, 2016, 168, 100-109.	0.5	9
18	The "sisters―α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Trends in Food Science and Technology, 2016, 51, 65-75.	7.8	95

MARC ANTON

#	Article	IF	CITATIONS
19	Self-assembly of myristic acid in the presence of choline hydroxide: Effect of molar ratio and temperature. Journal of Colloid and Interface Science, 2015, 445, 285-293.	5.0	31
20	In vitro digestion of fish oils rich in n-3 polyunsaturated fatty acids studied in emulsion and at the oil–water interface. Food and Function, 2013, 4, 231-239.	2.1	35
21	Egg yolk: structures, functionalities and processes. Journal of the Science of Food and Agriculture, 2013, 93, 2871-2880.	1.7	233
22	The advantages of using a combination of LDL and glutamine in comparison with TRIS egg yolk and Equex® STAMP extenders in the cryopreservation of canine semen. Research in Veterinary Science, 2012, 93, 440-447.	0.9	11
23	Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology, 2012, 77, 268-279.	0.9	38
24	A pilot study for the intrinsic labeling of egg proteins with ¹⁵ N and ¹³ C. Rapid Communications in Mass Spectrometry, 2012, 26, 43-48.	0.7	19
25	Interfacial and emulsifying behaviour of rice protein concentrate. Food Hydrocolloids, 2012, 29, 1-8.	5.6	62
26	Interfacial and Oil/Water Emulsions Characterization of Potato Protein Isolates. Journal of Agricultural and Food Chemistry, 2011, 59, 9466-9474.	2.4	67
27	Effect of low-density lipoproteins, spermatozoa concentration and glycerol on functional and motility parameters of bull spermatozoa during storage at 4 °C. Asian Journal of Andrology, 2011, 13, 281-286.	0.8	17
28	Hydrocolloids with emulsifying capacity. Part 2 – Adsorption properties at the n-hexadecane–Water interface. Food Hydrocolloids, 2010, 24, 121-130.	5.6	83
29	Hydrocolloids with emulsifying capacity. Part 3 – Adsorption and structural properties at the air–water surface. Food Hydrocolloids, 2010, 24, 131-141.	5.6	24
30	Hydrocolloids with emulsifying capacity. Part 1 – Emulsifying properties and interfacial characteristics of conventional (Acacia senegal (L.) Willd. var. senegal) and matured (Acacia (sen)) Tj ETQq0 0 0) rg₿sTd∕Ove	erlo slo 10 Tf 5(
31	Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions. Colloids and Surfaces B: Biointerfaces, 2010, 78, 44-52.	2.5	41
32	Influence of Ionic Complexation on Release Rate Profiles from Multiple Water-in-Oil-in-Water (W/O/W) Emulsions. Journal of Agricultural and Food Chemistry, 2010, 58, 7762-7769.	2.4	36
33	Impact of Sodium Caseinate Concentration and Location on Magnesium Release from Multiple W/O/W Emulsions. Langmuir, 2010, 26, 9250-9260.	1.6	40
34	Freezing canine sperm: Comparison of semen extenders containing Equex® and LDL (Low Density) Tj ETQq0 C) 0 rgBT /0	verlock 10 Tf
35	Phosvitin–calcium aggregation and organization at the air–water interface. Colloids and Surfaces B: Biointerfaces, 2008, 63, 12-20.	2.5	17
36	The role of metal ions in emulsion characteristics and flocculation behaviour of phosvitin-stabilised	5.6	11

The role of metal ions in emulsion characteristics and f emulsions. Food Hydrocolloids, 2008, 22, 1243-1253. cculation behaviour of phosvitin-stabilised 36

MARC ANTON

#	Article	IF	CITATIONS
37	New Insights into the Structure of Apolipoprotein B from Low-Density Lipoproteins and Identification of a Novel YGP-like Protein in Hen Egg Yolk. Journal of Agricultural and Food Chemistry, 2008, 56, 5871-5879.	2.4	32
38	Caleosin of Arabidopsis thaliana: Effect of Calcium on Functional and Structural Properties. Journal of Agricultural and Food Chemistry, 2008, 56, 11217-11224.	2.4	32
39	Structuring and Functionalization of Dispersions Containing Egg Yolk, Plasma and Granules Induced by Mechanical Treatments. Journal of Agricultural and Food Chemistry, 2007, 55, 9537-9544.	2.4	52
40	Structure modification in hen egg yolk low density lipoproteins layers between 30 and 45mN/m observed by AFM. Colloids and Surfaces B: Biointerfaces, 2007, 54, 241-248.	2.5	14
41	Structures and rheological properties of hen egg yolk low density lipoprotein layers spread at the air–water interface at pH 3 and 7. Colloids and Surfaces B: Biointerfaces, 2007, 57, 124-133.	2.5	25
42	Hen Egg Yolk Low-Density Lipoproteins Film Spreading at the Airâ^'Water and Oilâ^'Water Interfaces. Journal of Agricultural and Food Chemistry, 2006, 54, 3733-3737.	2.4	33
43	Oil-in-water emulsion properties and interfacial characteristics of hen egg yolk phosvitin. Food Hydrocolloids, 2006, 20, 35-43.	5.6	80
44	Effect of aggregation and sodium salt on emulsifying properties of egg yolk phosvitin. Food Hydrocolloids, 2005, 19, 769-776.	5.6	33
45	Stabilisation des mousses émulsionnées laitières : substitution de la gélatine par des mélanges de polysaccharides. Sciences Des Aliments, 2005, 25, 443-453.	0.2	1
46	Editorial : Émulsions alimentaires foisonnées. Sciences Des Aliments, 2005, 25, 349-352.	0.2	0
47	Physicochemical Modifications of High-Pressure-Treated Soybean Protein Isolates. Journal of Agricultural and Food Chemistry, 2004, 52, 1564-1571.	2.4	203
48	Bull semen in vitro fertility after cryopreservation using egg yolk LDL: a comparison with Optidyl®, a commercial egg yolk extender. Theriogenology, 2004, 61, 895-907.	0.9	169
49	Surface properties of hen egg yolk low-density lipoproteins spread at the air–water interface. Colloids and Surfaces B: Biointerfaces, 2003, 31, 185-194.	2.5	61
50	Effect of pH on interface composition and on quality of oil-in-water emulsions made with hen egg yolk. Colloids and Surfaces B: Biointerfaces, 1999, 12, 351-358.	2.5	52
51	Quail Egg Yolk: A Novel Cryoprotectant for the Freeze Preservation of Poitou Jackass Sperm. Cryobiology, 1997, 34, 385-393.	0.3	55
52	Lipid Peroxidation Induced by H2O2-Activated Metmyoglobin and Detection of a Myoglobin-Derived Radical. Journal of Agricultural and Food Chemistry, 1995, 43, 651-656.	2.4	23