
Mengmeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7591204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms. Critical Reviews in Food Science and Nutrition, 2022, 62, 3613-3630.	10.3	18
2	Dietary Sterols and Sterol Oxidation Products on Atherosclerosis: An Insight Provided by Liver Proteomic and Lipidomic. Molecular Nutrition and Food Research, 2021, 65, 2100516.	3.3	6
3	Sterols and Sterol Oxidation Products: Effect of Dietary Intake on Tissue Distribution in ApoE-Deficient Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 11867-11877.	5.2	5
4	Development and validation of eight cyanogenic glucosides via ultra-high-performance liquid chromatography-tandem mass spectrometry in agri-food. Food Chemistry, 2020, 331, 127305.	8.2	18
5	Phenolic acid profiles of common food and estimated natural intake with different structures and forms in five regions of China. Food Chemistry, 2020, 321, 126675.	8.2	18
6	Discovery of Keap1â^'Nrf2 smallâ^'molecule inhibitors from phytochemicals based on molecular docking. Food and Chemical Toxicology, 2019, 133, 110758.	3.6	40
7	Photooxidation of phytosterols in oil matrix: Effects of the light, photosensitizers and unsaturation degree of the lipids. Food Chemistry, 2019, 288, 162-169.	8.2	22
8	Quantitative determination of free and esterified phytosterol profile in nuts and seeds commonly consumed in China by SPE/GC–MS. LWT - Food Science and Technology, 2019, 100, 355-361.	5.2	25
9	Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chemistry, 2019, 276, 538-546.	8.2	71
10	Bioaccessibility and Absorption Mechanism of Phenylethanoid Glycosides Using Simulated Digestion/Caco-2 Intestinal Cell Models. Journal of Agricultural and Food Chemistry, 2018, 66, 4630-4637.	5.2	37
11	Phytosterol Profiles of Common Foods and Estimated Natural Intake of Different Structures and Forms in China. Journal of Agricultural and Food Chemistry, 2018, 66, 2669-2676.	5.2	46
12	Structure–activity relationships between sterols and their thermal stability in oil matrix. Food Chemistry, 2018, 258, 387-392.	8.2	10
13	Risk assessment of dietary exposure to phytosterol oxidation products from baked food in China. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 200-210.	2.3	10
14	How do oxyphytosterols affect human health?. Trends in Food Science and Technology, 2018, 79, 148-159.	15.1	21
15	Neuroprotective Effects of Four Phenylethanoid Glycosides on H2O2-Induced Apoptosis on PC12 Cells via the Nrf2/ARE Pathway. International Journal of Molecular Sciences, 2018, 19, 1135.	4.1	52
16	Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 918-927.	2.3	29
17	Metal ions accelerated phytosterol thermal degradation on Ring A & Ring B of steroid nucleus in oils. Food Research International, 2017, 100, 219-226.	6.2	7
18	Effect of Transition Metal lons on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions. Scientific Reports, 2016, 6, 27240.	3.3	10