Jeremy C Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7591201/publications.pdf

Version: 2024-02-01

56	2,207	279487 23 h-index	46
papers	citations		g-index
56	56	56	2202
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Metastable liquid–liquid transition in a molecular model of water. Nature, 2014, 510, 385-388.	13.7	431
2	The role of molecular modeling in confined systems: impact and prospects. Physical Chemistry Chemical Physics, 2011, 13, 58-85.	1.3	153
3	Advances in Computational Studies of the Liquid–Liquid Transition in Water and Water-Like Models. Chemical Reviews, 2018, 118, 9129-9151.	23.0	152
4	Liquid-liquid transition in ST2 water. Journal of Chemical Physics, 2012, 137, 214505.	1.2	144
5	Pressure enhancement in carbon nanopores: a major confinement effect. Physical Chemistry Chemical Physics, 2011, 13, 17163-17170.	1.3	124
6	Finned zeolite catalysts. Nature Materials, 2020, 19, 1074-1080.	13.3	116
7	Two-state thermodynamics of the ST2 model for supercooled water. Journal of Chemical Physics, 2014, 140, 104502.	1.2	96
8	The liquid–liquid transition in supercooled ST2 water: a comparison between umbrella sampling and well-tempered metadynamics. Faraday Discussions, 2013, 167, 77.	1.6	85
9	Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study. Physical Chemistry Chemical Physics, 2011, 13, 3985.	1.3	66
10	Comment on "The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water―[I and II: J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)]. Journal of Chemical Physics, 2018, 148, 137101.	1.2	58
11	On the molecular origin of high-pressure effects in nanoconfinement: The role of surface chemistry and roughness. Journal of Chemical Physics, 2013, 139, 144701.	1.2	57
12	Recent advances in molecular simulation: A chemical engineering perspective. AICHE Journal, 2015, 61, 370-383.	1.8	53
13	Cooperative effects of inorganic and organic structure-directing agents in ZSM-5 crystallization. Molecular Systems Design and Engineering, 2018, 3, 159-170.	1.7	51
14	Computational investigation of cold denaturation in the Trp-cage miniprotein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8991-8996.	3.3	48
15	Crystallization of Mordenite Platelets using Cooperative Organic Structure-Directing Agents. Journal of the American Chemical Society, 2019, 141, 20155-20165.	6.6	42
16	Molecular Modifiers Suppress Nonclassical Pathways of Zeolite Crystallization. Chemistry of Materials, 2019, 31, 3228-3238.	3.2	39
17	A non-equilibrium molecular dynamics study of methane transport in clay nano-pores. Microporous and Mesoporous Materials, 2017, 249, 88-96.	2.2	32
18	Coupling of Nanoparticle Dynamics to Polymer Center-of-Mass Motion in Semidilute Polymer Solutions. Macromolecules, 2018, 51, 1865-1872.	2.2	32

#	Article	IF	CITATIONS
19	Simulating Local Adsorption Isotherms in Structurally Complex Porous Materials: A Direct Assessment of the Slit Pore Model. Journal of Physical Chemistry Letters, 2011, 2, 165-169.	2.1	30
20	Liquid–liquid phase transition in an ionic model of silica. Journal of Chemical Physics, 2017, 146, 234503.	1.2	29
21	Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics. Current Opinion in Chemical Engineering, 2019, 23, 34-43.	3.8	29
22	Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions. Soft Matter, 2019, 15, 1260-1268.	1.2	27
23	Olanzapine crystal symmetry originates in preformed centrosymmetric solute dimers. Nature Chemistry, 2020, 12, 914-920.	6.6	26
24	Adsorption and diffusion of argon in disordered nanoporous carbons. Adsorption, 2011, 17, 189-199.	1.4	25
25	Spatiotemporal Coke Coupling Enhances <i>para</i> -Xylene Selectivity in Highly Stable MCM-22 Catalysts. Journal of the American Chemical Society, 2022, 144, 7861-7870.	6.6	19
26	Palmer et al. reply. Nature, 2016, 531, E2-E3.	13.7	17
27	Hybrid Monte Carlo with LAMMPS. Journal of Theoretical and Computational Chemistry, 2018, 17, 1840002.	1.8	17
28	Computer Simulation of Water Sorption on Flexible Protein Crystals. Journal of Physical Chemistry Letters, 2012, 3, 2713-2718.	2.1	16
29	Molecular modeling and structural characterization of a high glycine–tyrosine hair keratin associated protein. Physical Chemistry Chemical Physics, 2017, 19, 8575-8583.	1.3	16
30	Openâ€source molecular modeling software in chemical engineering focusing on the Molecular Simulation Design Framework. AICHE Journal, 2021, 67, e17206.	1.8	16
31	Density and bond-orientational relaxations in supercooled water. Molecular Physics, 2016, 114, 2580-2585.	0.8	14
32	Anomalous scattering in supercooled ST2 water. Molecular Physics, 2018, 116, 1953-1964.	0.8	14
33	Structure Dominates Localization of Tracers within Aging Nanoparticle Glasses. Journal of Physical Chemistry Letters, 2019, 10, 1784-1789.	2.1	13
34	Tracer Transport Probes Relaxation and Structure of Attractive and Repulsive Glassy Liquids. Journal of Physical Chemistry Letters, 2018, 9, 3008-3013.	2.1	11
35	Acidic Polysaccharides as Green Alternatives for Barite Scale Dissolution. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55434-55443.	4.0	11
36	A Computational Study of the Effect of Matrix Structural Order on Water Sorption by Trp-Cage Miniproteins. Journal of Physical Chemistry B, 2015, 119, 1847-1856.	1.2	9

#	Article	IF	CITATIONS
37	A computational investigation of the thermodynamics of the Stillinger-Weber family of models at supercooled conditions. Molecular Physics, 2019, 117, 3254-3268.	0.8	9
38	Tracer transport in attractive and repulsive supercooled liquids and glasses. Journal of Chemical Physics, 2019, 151, 194501.	1.2	9
39	Fluctuations near the liquid–liquid transition in a model of silica. Physical Chemistry Chemical Physics, 2018, 20, 25195-25202.	1.3	8
40	Thermodynamic analysis of the stability of planar interfaces between coexisting phases and its application to supercooled water. Journal of Chemical Physics, 2019, 150, 224503.	1.2	7
41	Signatures of sluggish dynamics and local structural ordering during ice nucleation. Journal of Chemical Physics, 2022, 156, 114502.	1.2	7
42	Structuring of Organic Solvents at Solid Interfaces and Ramifications for Antimalarial Adsorption on \hat{l}^2 -Hematin Crystals. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 29288-29298.	4.0	6
43	Nanoparticle dispersion in porous media: Effects of hydrodynamic interactions and dimensionality. AICHE Journal, 2021, 67, e17147.	1.8	6
44	Dynamics of polydisperse hard-spheres under strong confinement. Molecular Physics, 2020, 118, e1728407.	0.8	5
45	Nanoparticle dynamics in semidilute polymer solutions: Rings versus linear chains. Journal of Rheology, 2021, 65, 745-755.	1.3	5
46	Factors controlling the molecular modification of one-dimensional zeolites. Physical Chemistry Chemical Physics, 2021, 23, 18610-18617.	1.3	5
47	How to Identify the Crystal Growth Unit. Israel Journal of Chemistry, 2021, 61, 818-827.	1.0	5
48	From water's ephemeral dance, a new order emerges. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1829-1831.	3.3	4
49	Nanoparticle dispersion in porous media: Effects of array geometry and flow orientation. Physical Review E, 2021, 104, 015102.	0.8	4
50	Analysis of the solvation structure of rubidium bromide under nanoconfinement. Molecular Simulation, 2012, 38, 1209-1220.	0.9	3
51	Solvent Structure and Dynamics near the Surfaces of \hat{l}^2 -Hematin Crystals. Journal of Physical Chemistry B, 2021, 125, 11264-11274.	1.2	2
52	Precrystallization solute assemblies and crystal symmetry. Faraday Discussions, 2022, 235, 307-321.	1.6	2
53	Liquid-liquid transition in ST2 water. , 0, .		1
54	Nanoparticle dispersion in porous media: Effects of attractive particle-media interactions. Physical Review E, 2022, 105 , .	0.8	1

#	Article	IF	CITATIONS
55	A tribute to Keith E. Gubbins. AICHE Journal, 2021, 67, e17187.	1.8	0
56	Keith E. Gubbins: A retrospective. AICHE Journal, 2021, 67, e17191.	1.8	0