Jian Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7591097/publications.pdf Version: 2024-02-01

ΙιλΝ ΖΗΔΝ

#	Article	IF	CITATIONS
1	Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut, 2020, 69, 1010-1018.	12.1	404
2	Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nature Communications, 2017, 8, 14902.	12.8	303
3	Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. Journal of Molecular Biology, 2011, 414, 289-302.	4.2	131
4	Energy Functions in De Novo Protein Design: Current Challenges and Future Prospects. Annual Review of Biophysics, 2013, 42, 315-335.	10.0	75
5	A new sizeâ€independent score for pairwise protein structure alignment and its application to structure classification and nucleicâ€acid binding prediction. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2080-2088.	2.6	69
6	Develop reusable and combinable designs for transcriptional logic gates. Molecular Systems Biology, 2010, 6, 388.	7.2	46
7	Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2565-2573.	2.6	46
8	Optimal secretion of alkali-tolerant xylanase in Bacillus subtilis by signal peptide screening. Applied Microbiology and Biotechnology, 2016, 100, 8745-8756.	3.6	35
9	Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement. Nature Communications, 2021, 12, 2777.	12.8	33
10	Repurposing clinically approved drugs for COVID-19 treatment targeting SARS-CoV-2 papain-like protease. International Journal of Biological Macromolecules, 2021, 188, 137-146.	7.5	32
11	Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction. Rna, 2017, 23, 14-22.	3.5	28
12	RNAcmap: a fully automatic pipeline for predicting contact maps of RNAs by evolutionary coupling analysis. Bioinformatics, 2021, 37, 3494-3500.	4.1	27
13	SPOTâ€Ligand: Fast and effective structureâ€based virtual screening by binding homology search according to ligand and receptor similarity. Journal of Computational Chemistry, 2016, 37, 1734-1739.	3.3	15
14	Accurate inference of the full base-pairing structure of RNA by deep mutational scanning and covariation-induced deviation of activity. Nucleic Acids Research, 2020, 48, 1451-1465.	14.5	15
15	Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA. PLoS ONE, 2017, 12, e0184722.	2.5	15
16	Investigation the Possibility of Using Peptides with a Helical Repeating Pattern of Hydro-Phobic and Hydrophilic Residues to Inhibit IL-10. PLoS ONE, 2016, 11, e0153939.	2.5	14
17	<i>B</i> â€factor profile prediction for RNA flexibility using support vector machines. Journal of Computational Chemistry, 2018, 39, 407-411.	3.3	13
18	Probing RNA structures and functions by solvent accessibility: an overview from experimental and computational perspectives. Briefings in Bioinformatics, 2022, 23, .	6.5	13

Jian Zhan

#	Article	IF	CITATIONS
19	<i>De novo</i> protein design by an energy function based on series expansion in distance and orientation dependence. Bioinformatics, 2021, 38, 86-93.	4.1	8
20	YesU from Bacillus subtilis preferentially binds fucosylated glycans. Scientific Reports, 2018, 8, 13139.	3.3	7
21	Selfâ€derived structureâ€disrupting peptides targeting methionine aminopeptidase in pathogenic bacteria: a new strategy to generate antimicrobial peptides. FASEB Journal, 2019, 33, 2095-2104.	0.5	7
22	Predicting functional long non-coding RNAs validated by low throughput experiments. RNA Biology, 2019, 16, 1555-1564.	3.1	6
23	Self-Inhibitory Peptides Targeting the Neisseria gonorrhoeae MtrCDE Efflux Pump Increase Antibiotic Susceptibility. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0154221.	3.2	2
24	High-throughput split-protein profiling by combining transposon mutagenesis and regulated protein-protein interactions with deep sequencing. International Journal of Biological Macromolecules, 2022, 203, 543-552.	7.5	0