Yongfeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7590880/publications.pdf

Version: 2024-02-01

98 papers

4,450 citations

38 h-index 62 g-index

98 all docs 98 docs citations 98 times ranked 5226 citing authors

#	Article	IF	CITATIONS
1	Electrochemical synthesis of FeNx doped carbon quantum dots for sensitiveÂdetection of Cu2+ ion. Green Energy and Environment, 2023, 8, 141-150.	8.7	9
2	Highly Efficient Water Splitting Catalyst Composed of N,P-Doped Porous Carbon Decorated with Surface P-Enriched Ni ₂ P Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20358-20367.	8.0	18
3	Tuning surface chemical property in hierarchical porous carbon via nitrogen and phosphorus doping for deep desulfurization. Separation and Purification Technology, 2022, 280, 119923.	7.9	7
4	Heteroatoms-doped hierarchical porous carbon with multi-scale structure derived from petroleum asphalt for high-performance supercapacitors. Carbon, 2022, 187, 338-348.	10.3	57
5	Theoretical study of structure sensitivity on Au doped CeO2 surfaces for formaldehyde oxidation: The effect of crystal planes and Au doping. Chemical Engineering Journal, 2022, 433, 133599.	12.7	7
6	Electrochemical activation induced phase and structure reconstruction to reveal cobalt sulfide intrinsic energy storage capacity. Chemical Engineering Journal, 2022, 434, 134473.	12.7	21
7	Crumpled Nitrogen-Doped Porous Carbon Nanosheets Derived from Petroleum Pitch for High-Performance and Flexible Electromagnetic Wave Absorption. Industrial & Description in Chemistry Research, 2022, 61, 2799-2808.	3.7	22
8	Electronic structure regulation of CoMoS catalysts by N, P co-doped carbon modification for effective hydrodesulfurization. Fuel, 2022, 322, 124160.	6.4	7
9	Silicon doped graphene as high cycle performance anode for lithium-ion batteries. Carbon, 2022, 196, 633-638.	10.3	22
10	Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Research, 2022, 15, 9926-9935.	10.4	30
11	Facile fabrication of Fe/Fe5C2@N-doped porous carbon as an efficient microwave absorbent with strong and broadband absorption properties at an ultralow filler loading. Carbon, 2022, 196, 890-901.	10.3	26
12	Glycine functionalized boron nitride nanosheets with improved dispersibility and enhanced interaction with matrix for thermal composites. Chemical Engineering Journal, 2021, 408, 127360.	12.7	57
13	Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption. Journal of Materials Science and Technology, 2021, 70, 214-223.	10.7	74
14	Enhanced thermal conductivity and isotropy of polymer composites by fabricating <scp>3D</scp> network structure from carbonâ€based materials. Journal of Applied Polymer Science, 2021, 138, 49781.	2.6	15
15	Cobalt single atoms anchored on nitrogen-doped porous carbon as an efficient catalyst for oxidation of silanes. Green Chemistry, 2021, 23, 1026-1035.	9.0	21
16	Construction of Graphene-Wrapped Pd/TiO ₂ Hollow Spheres with Enhanced Anti-CO Poisoning Capability toward Photoassisted Methanol Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 1352-1360.	6.7	27
17	Water-soluble salt-templated strategy to regulate mesoporous nanosheets-on-network structure with active mixed-phase CoO/Co3O4 nanosheets on graphene for superior lithium storage. Journal of Alloys and Compounds, 2021, 857, 157626.	5 . 5	15
18	Enhanced catalytic hydrogen evolution reaction performance of highly dispersed Ni2P nanoparticles supported by P-doped porous carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126308.	4.7	10

#	Article	IF	CITATIONS
19	In-situ bonding with sulfur in petroleum asphalt to synthesize transition metal (Mn, Mo, Fe, or) Tj ETQq1 1 0.7843	14 rgBT /0	Oygrlock 10
20	Dual-template endowing N, O co-doped hierarchically porous carbon from potassium citrate with high capacitance and rate capability for supercapacitors. Chemical Engineering Journal, 2021, 417, 129289.	12.7	91
21	RGO-wrapped Ti3C2/TiO2 nanowires as a highly efficient photocatalyst for simultaneous reduction of Cr(VI) and degradation of RhB under visible light irradiation. Journal of Alloys and Compounds, 2021, 874, 159865.	5.5	33
22	Green production of silica hydroxyl riched palygorskite by shear-assisted supercritical CO2 separation process for dye adsorption and heavy oil viscosity reduction. Applied Clay Science, 2021, 212, 106207.	5.2	0
23	Intrinsic defect-rich porous carbon nanosheets synthesized from potassium citrate toward advanced supercapacitors and microwave absorption. Carbon, 2021, 183, 176-186.	10.3	67
24	Construction of MnO-skeleton cross-linked by carbon nanotubes networks for efficient microwave absorption. Journal of Colloid and Interface Science, 2021, 602, 778-788.	9.4	16
25	Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Composites Part B: Engineering, 2021, 224, 109168.	12.0	66
26	Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Applied Catalysis B: Environmental, 2021, 298, 120494.	20.2	105
27	Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt. Chemical Engineering Journal, 2020, 380, 122552.	12.7	18
28	Fabrication of porous graphene-like carbon nanosheets with rich doped-nitrogen for high-performance electromagnetic microwave absorption. Applied Surface Science, 2020, 530, 147298.	6.1	49
29	Self-reconstruction strategy to synthesis of Ni/Co-OOH nanoflowers decorated with N, S co-doped carbon for high-performance energy storage. Chemical Engineering Journal, 2020, 396, 125323.	12.7	40
30	Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents. Carbon, 2020, 166, 218-226.	10.3	63
31	In-situ formation of oxygen-vacancy-rich NiCo2O4/nitrogen-deficient graphitic carbon nitride hybrids for high-performance supercapacitors. Electrochimica Acta, 2020, 340, 135996.	5.2	39
32	Exfoliated multi-layered graphene anode with the broadened delithiation voltage plateau below 0.5ÂV. Journal of Energy Chemistry, 2020, 49, 233-242.	12.9	12
33	Construction of a Graphene-Wrapped Pd/SiO ₂ @TiO ₂ Core–Shell Sphere for Enhanced Photoassisted Electrocatalytic Methanol Oxidation Property. Industrial & Dystrial & Samp; Engineering Chemistry Research, 2020, 59, 13380-13387.	3.7	8
34	Synthesis of Ultralight N-Rich Porous Graphene Nanosheets Derived from Fluid Catalytic Cracking Slurry and Their Electromagnetic Wave Absorption Properties. Industrial & Engineering Chemistry Research, 2020, 59, 8243-8251.	3.7	13
35	Scalable preparation of water-soluble ink of few-layered WSe sub>2 / sub> nanosheets for large-area electronics*. Chinese Physics B, 2020, 29, 066802.	1.4	3
36	Facile Synthesis of Well-Dispersed Ni2P on N-Doped Nanomesh Carbon Matrix as a High-Efficiency Electrocatalyst for Alkaline Hydrogen Evolution Reaction. Nanomaterials, 2019, 9, 1022.	4.1	16

#	Article	IF	Citations
37	Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite. Carbon, 2019, 153, 682-690.	10.3	40
38	Fabrication of ternary NaTaO3/g-C3N4/G heterojunction photocatalyst with enhanced activity for Rhodamine B degradation. Journal of Alloys and Compounds, 2019, 805, 802-810.	5.5	34
39	Synthesis of Sandwich-Like Nanostructure Fillers and Their Use in Different Types of Thermal Composites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40694-40703.	8.0	26
40	Assembling Graphene-Encapsulated Pd/TiO2 Nanosphere with Hierarchical Architecture for High-Performance Visible-Light-Assisted Methanol Electro-Oxidation Material. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 19486-19494.	3.7	29
41	Hierarchical MoP Hollow Nanospheres Anchored on a N,P,Sâ€Doped Porous Carbon Matrix as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 4662-4670.	6.8	38
42	Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chemistry, 2019, 21, 704-711.	9.0	98
43	In-situ activation endows the integrated Fe3C/Fe@nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chemical Engineering Journal, 2019, 375, 122061.	12.7	45
44	Enhanced electromagnetic wave absorption of worm-like hollow porous MnO@C/CNTs composites. Journal of Alloys and Compounds, 2019, 797, 1086-1094.	5.5	18
45	Ultralow concentration of molybdenum disulfide nanosheets for enhanced oil recovery. Fuel, 2019, 251, 514-522.	6.4	50
46	N, S Codoped Hierarchical Porous Graphene Nanosheets Derived from Petroleum Asphalt via in Situ Texturing Strategy for High-Performance Supercapacitors. Industrial & Engineering Chemistry Research, 2019, 58, 4487-4494.	3.7	37
47	Nitrogen-Enriched Hollow Carbon Spheres Coupled with Efficient Co–Nx–C Species as Cathode Catalysts for Triiodide Reduction in Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 2679-2685.	6.7	15
48	In-situ observation of electrochemically driven Kirkendall effect induced volume shrinkage of CuO nanowires during potassiation. Materials Letters, 2019, 237, 340-343.	2.6	3
49	Nitrogen and Phosphorus Coâ€Doped Grapheneâ€Like Carbon Catalyzed Selective Oxidation of Alcohols. Asian Journal of Organic Chemistry, 2019, 8, 422-427.	2.7	2
50	Dielectric composite reinforced by in-situ growth of carbon nanotubes on boron nitride nanosheets with high thermal conductivity and mechanical strength. Chemical Engineering Journal, 2019, 358, 718-724.	12.7	73
51	Reduced graphene oxide supported Pd-Cu-Co trimetallic catalyst: synthesis, characterization and methanol electrooxidation properties. Journal of Energy Chemistry, 2019, 29, 72-78.	12.9	53
52	Controllable and eco-friendly synthesis of P-riched carbon quantum dots and its application for copper (II) ion sensing. Applied Surface Science, 2018, 448, 589-598.	6.1	55
53	Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide. Journal of Materials Science, 2018, 53, 7258-7265.	3.7	15
54	Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors. Carbon, 2018, 130, 325-332.	10.3	124

#	Article	IF	CITATIONS
55	Preparation of an efficient Fe/N/C electrocatalyst and its application for oxygen reduction reaction in alkaline media. Journal of Electroanalytical Chemistry, 2018, 810, 62-68.	3.8	23
56	Organochlorine Compounds with a Low Boiling Point in Desalted Crude Oil: Identification and Conversion. Energy & Energy	5.1	13
57	Synergistic effect of size distribution on the electrical and thermal conductivities of graphene-based paper. Journal of Materials Science, 2018, 53, 10261-10269.	3.7	11
58	Density Functional Theory Study of the Formaldehyde Catalytic Oxidation Mechanism on a Au-Doped CeO2(111) Surface. Journal of Physical Chemistry C, 2018, 122, 438-448.	3.1	22
59	Sulfur-doped porous graphene frameworks as an efficient metal-free electrocatalyst for oxygen reduction reaction. Materials Letters, 2018, 214, 209-212.	2.6	14
60	Crumpled graphene prepared by a simple ultrasonic pyrolysis method for fast photodetection. Carbon, 2018, 128, 117-124.	10.3	19
61	Enhanced Electromagnetic Microwave Absorption Property of Peapod-like MnO@carbon Nanowires. ACS Applied Materials & Diterfaces, 2018, 10, 40078-40087.	8.0	126
62	Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope. Nano Energy, 2018, 53, 544-549.	16.0	34
63	In Situ-Generated Volatile Precursor for CVD Growth of a Semimetallic 2D Dichalcogenide. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34401-34408.	8.0	23
64	Atomic N-coordinated cobalt sites within nanomesh graphene as highly efficient electrocatalysts for triiodide reduction in dye-sensitized solar cells. Chemical Engineering Journal, 2018, 349, 782-790.	12.7	24
65	High-Efficiency Production of Graphene by Supercritical CO ₂ Exfoliation with Rapid Expansion. Langmuir, 2018, 34, 7797-7804.	3.5	20
66	Silica nanosphere supported palladium nanoparticles encapsulated with graphene: High-performance electrocatalysts for methanol oxidation reaction. Applied Surface Science, 2018, 452, 11-18.	6.1	39
67	Insight into the topological defects and dopants in metal-free holey graphene for triiodide reduction in dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 5952-5960.	10.3	49
68	Green production of hydrogen by hydrolysis of graphene-modified aluminum through infrared light irradiation. Chemical Engineering Journal, 2017, 320, 160-167.	12.7	25
69	Phosphorus-doped porous graphene nanosheet as metal-free electrocatalyst for triiodide reduction reaction in dye-sensitized solar cell. Applied Surface Science, 2017, 405, 308-315.	6.1	45
70	Scalable Production of Hydrophilic Graphene Nanosheets via in Situ Ball-Milling-Assisted Supercritical CO ₂ Exfoliation. Industrial & Engineering Chemistry Research, 2017, 56, 6939-6944.	3.7	26
71	P-doped nanomesh graphene with high-surface-area as an efficient metal-free catalyst for aerobic oxidative coupling of amines. Carbon, 2017, 121, 443-451.	10.3	69
72	Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. ACS Nano, 2017, 11, 4275-4282.	14.6	392

#	Article	IF	Citations
73	Enhanced Electromagnetic Microwave Absorption Performance of Lightweight Bowl-like Carbon Nanoparticles. Industrial & Engineering Chemistry Research, 2017, 56, 11460-11466.	3.7	61
74	S-Doped Porous Graphene Microspheres with Individual Robust Red-Blood-Cell-Like Microarchitecture for Capacitive Energy Storage. Industrial & Engineering Chemistry Research, 2017, 56, 9524-9532.	3.7	27
75	Synergistic effects of nitrogen-doped graphene and Fe2O3 nanocomposites in catalytic oxidization of aldehyde with O2. Chemical Engineering Journal, 2017, 330, 880-889.	12.7	18
76	The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability. Materials Letters, 2017, 207, 62-65.	2.6	19
77	Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Applied Catalysis B: Environmental, 2017, 203, 1-8.	20.2	185
78	Shear-Assisted Production of Few-Layer Boron Nitride Nanosheets by Supercritical CO2 Exfoliation and Its Use for Thermally Conductive Epoxy Composites. Scientific Reports, 2017, 7, 17794.	3.3	46
79	Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon, 2016, 108, 234-241.	10.3	221
80	Cold-adapted bacteria for bioremediation of crude oil-contaminated soil. Journal of Chemical Technology and Biotechnology, 2016, 91, 2286-2297.	3.2	31
81	High graphite N content in nitrogen-doped graphene as an efficient metal-free catalyst for reduction of nitroarenes in water. Green Chemistry, 2016, 18, 4254-4262.	9.0	109
82	Interconnected nitrogen and sulfur dual-doped porous carbon as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. Journal of Power Sources, 2016, 327, 289-296.	7.8	21
83	Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212, 614-620.	5.2	50
84	High-surface-area nanomesh graphene with enriched edge sites as efficient metal-free cathodes for dye-sensitized solar cells. Nanoscale, 2016, 8, 13059-13066.	5.6	53
85	Construction of efficient counter electrodes for dye-sensitized solar cells: Fe2O3 nanoparticles anchored onto graphene frameworks. Carbon, 2016, 96, 947-954.	10.3	53
86	Preparation of graphene nanosheets by shear-assisted supercritical CO 2 exfoliation. Chemical Engineering Journal, 2016, 284, 78-84.	12.7	91
87	Sulfur-doped porous carbon as metal-free counter electrode for high-efficiency dye-sensitized solar cells. Journal of Power Sources, 2015, 282, 228-234.	7.8	67
88	Synthesis of graphene \hat{l}_{\pm} -Fe ₂ O ₃ composites with excellent electromagnetic wave absorption properties. RSC Advances, 2015, 5, 60114-60120.	3.6	60
89	Supercritical fluid extraction with carbon nanotubes as a solid collection trap for the analysis of polycyclic aromatic hydrocarbons and their derivatives. Journal of Chromatography A, 2015, 1395, 1-6.	3.7	28
90	Au/graphene oxide/carbon nanotube flexible catalyst film: synthesis, characterization and its application for catalytic reduction of 4-nitrophenol. RSC Advances, 2015, 5, 37710-37715.	3.6	34

YONGFENG LI

#	Article	IF	CITATIONS
91	Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their application to solar cells. Carbon, 2014, 68, 511-519.	10.3	29
92	Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe ₃ O ₄ nanoparticles. Journal of Materials Chemistry A, 2014, 2, 14940.	10.3	306
93	Plasma synthesis of carbon nanotube-gold nanohybrids: efficient catalysts for green oxidation of silanes in water. Journal of Materials Chemistry A, 2014, 2, 245-250.	10.3	44
94	Synthesis of three-dimensional graphene from petroleum asphalt by chemical vapor deposition. Materials Letters, 2014, 122, 285-288.	2.6	43
95	Controllable synthesis of single-, double- and triple-walled carbon nanotubes from asphalt. Chemical Engineering Journal, 2013, 225, 210-215.	12.7	21
96	High-quality single-walled carbon nanotubes synthesized from asphalt and petroleum coke., 2013,,.		0
97	C59N Peapods Sensing the Temperature. Sensors, 2013, 13, 966-974.	3.8	5
98	Finding a Cheaper Carbon Source: High-Quality, Single-Walled Nanotubes from Asphalt and Petroleum Coke. IEEE Nanotechnology Magazine, 2013, 7, 15-18.	1.3	2