Veit Goder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7590269/publications.pdf Version: 2024-02-01

VEIT CODER

#	Article	IF	CITATIONS
1	Pep4-dependent microautophagy is required for post-ER degradation of GPI-anchored proteins. Autophagy, 2022, 18, 223-225.	9.1	3
2	Membrane trafficking: ESCRTs act here, there, andÂeverywhere. Current Biology, 2022, 32, R292-R294.	3.9	3
3	Post-ER degradation of misfolded GPI-anchored proteins is linked with microautophagy. Current Biology, 2021, 31, 4025-4037.e5.	3.9	14
4	Lipids and their (un)known effects on ER-associated protein degradation (ERAD). Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158488.	2.4	10
5	Dual Independent Roles of the p24 Complex in Selectivity of Secretory Cargo Export from the Endoplasmic Reticulum. Cells, 2020, 9, 1295.	4.1	7
6	Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death and Differentiation, 2019, 26, 1545-1565.	11.2	30
7	Specific COPII vesicles transport ER membranes to sites of autophagosome formation. Molecular and Cellular Oncology, 2017, 4, e1173768.	0.7	0
8	A SNARE and specific COPII requirements define ER-derived vesicles for the biogenesis of autophagosomes. Autophagy, 2016, 12, 1049-1050.	9.1	7
9	Limited ER quality control for GPI-anchored proteins. Journal of Cell Biology, 2016, 213, 693-704.	5.2	43
10	An ER-Localized SNARE Protein Is Exported in Specific COPII Vesicles for Autophagosome Biogenesis. Cell Reports, 2016, 14, 1710-1722.	6.4	56
11	COPII Coat Composition Is Actively Regulated by Luminal Cargo Maturation. Current Biology, 2015, 25, 152-162.	3.9	62
12	Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells, 2014, 3, 824-847.	4.1	95
13	Roles of Ubiquitin in Endoplasmic Reticulum-Associated Protein Degradation (ERAD). Current Protein and Peptide Science, 2012, 13, 425-435.	1.4	11
14	Protein <i>O</i> -mannosyltransferases participate in ER protein quality control. Journal of Cell Science, 2011, 124, 144-153.	2.0	42
15	The ERâ€associated degradation component Der1p and its homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p. FEBS Letters, 2008, 582, 1575-1580.	2.8	38
16	Mutations in the Sec61p Channel Affecting Signal Sequence Recognition and Membrane Protein Topology. Journal of Biological Chemistry, 2007, 282, 33201-33209.	3.4	66
17	Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins. Cell, 2006, 126, 361-373.	28.9	648
18	The Plug Domain of Yeast Sec61p Is Important for Efficient Protein Translocation, but Is Not Essential for Cell Viability. Molecular Biology of the Cell, 2006, 17, 4063-4068.	2.1	74

Veit Goder

#	Article	IF	CITATIONS
19	Sec61p Contributes to Signal Sequence Orientation According to the Positive-Inside Rule. Molecular Biology of the Cell, 2004, 15, 1470-1478.	2.1	104
20	Membrane-protein integration and the role of the translocation channel. Trends in Cell Biology, 2004, 14, 568-575.	7.9	160
21	Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO Journal, 2003, 22, 3645-3653.	7.8	129
22	Topogenesis of membrane proteins: determinants and dynamics. FEBS Letters, 2001, 504, 87-93.	2.8	163
23	In vivo kinetics of protein targeting to the endoplasmic reticulum determined by site-specific phosphorylation. EMBO Journal, 2000, 19, 6704-6712.	7.8	28
24	The Topogenic Contribution of Uncharged Amino Acids on Signal Sequence Orientation in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2000, 275, 14916-14922.	3.4	30
25	Glycosylation Can Influence Topogenesis of Membrane Proteins and Reveals Dynamic Reorientation of Nascent Polypeptides within the Translocon. Journal of Cell Biology, 1999, 147, 257-266.	5.2	85
26	Impact of the Presequence of a Mitochondrium-Targeted Precursor, Preadrenodoxin, on Folding, Catalytic Activity, and Stability of the Proteinin Vitro. Archives of Biochemistry and Biophysics, 1998, 359, 31-41.	3.0	11