
Sung Jae Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7590256/publications.pdf Version: 2024-02-01

SUNC INF SHIN

#	Article	IF	CITATIONS
1	Clinical Significance of Differentiation of <i>Mycobacterium massiliense</i> from <i>Mycobacterium abscessus</i> . American Journal of Respiratory and Critical Care Medicine, 2011, 183, 405-410.	5.6	464
2	Host Cell Autophagy Activated by Antibiotics Is Required for Their Effective Antimycobacterial Drug Action. Cell Host and Microbe, 2012, 11, 457-468.	11.0	219
3	Macrolide Treatment for <i>Mycobacterium abscessus</i> and <i>Mycobacterium massiliense</i> Infection and Inducible Resistance. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 917-925.	5.6	179
4	Clinical Significance of the Differentiation Between Mycobacterium avium and Mycobacterium intracellulare in M avium Complex Lung Disease. Chest, 2012, 142, 1482-1488.	0.8	170
5	Mycobacterial Characteristics and Treatment Outcomes in Mycobacterium abscessus Lung Disease. Clinical Infectious Diseases, 2017, 64, 309-316.	5.8	169
6	Outcomes of <i>Mycobacterium avium</i> complex lung disease based on clinical phenotype. European Respiratory Journal, 2017, 50, 1602503.	6.7	154
7	Intermittent Antibiotic Therapy for Nodular Bronchiectatic <i>Mycobacterium avium</i> Complex Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 96-103.	5.6	134
8	<i>Mycobacterium abscessus</i> activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cellular Microbiology, 2008, 10, 1608-1621.	2.1	113
9	Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection. Cell Reports, 2017, 18, 2752-2765.	6.4	98
10	A Potential Protein Adjuvant Derived from Mycobacterium tuberculosis Rv0652 Enhances Dendritic Cells-Based Tumor Immunotherapy. PLoS ONE, 2014, 9, e104351.	2.5	91
11	Clinical Characteristics, Treatment Outcomes, and Resistance Mutations Associated with Macrolide-Resistant Mycobacterium avium Complex Lung Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 6758-6765.	3.2	90
12	Prognostic factors associated with long-term mortality in 1445 patients with nontuberculous mycobacterial pulmonary disease: a 15-year follow-up study. European Respiratory Journal, 2020, 55, 1900798.	6.7	89
13	Clofazimine-Containing Regimen for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	86
14	Evaluation of the antimicrobial activity of florfenicol against bacteria isolated from bovine and porcine respiratory disease. Veterinary Microbiology, 2005, 106, 73-77.	1.9	84
15	<i>Mycobacterium tuberculosis</i> Rv0577, a novel TLR2 agonist, induces maturation of dendritic cells and drives Th1 immune response. FASEB Journal, 2012, 26, 2695-2711.	0.5	84
16	Treatment of Refractory Mycobacterium avium Complex Lung Disease with a Moxifloxacin-Containing Regimen. Antimicrobial Agents and Chemotherapy, 2013, 57, 2281-2285.	3.2	82
17	Clinical Application of Self-Expandable Metallic Stent for Treatment of Colorectal Obstruction Caused by Extrinsic Invasive Tumors. Diseases of the Colon and Rectum, 2008, 51, 578-583.	1.3	81
18	Common Variants in the Glycerol Kinase Gene Reduce Tuberculosis Drug Efficacy. MBio, 2019, 10, .	4.1	80

#	Article	IF	CITATIONS
19	Therapeutic Drug Monitoring in the Treatment of <i>Mycobacterium avium</i> Complex Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 797-802.	5.6	77
20	Rapid and Reliable Method for Quantification of Mycobacterium paratuberculosis by Use of the BACTEC MGIT 960 System. Journal of Clinical Microbiology, 2007, 45, 1941-1948.	3.9	75
21	Enhanced Efficacy of Therapeutic Cancer Vaccines Produced by Co-Treatment with <i>Mycobacterium tuberculosis</i> Heparin-Binding Hemagglutinin, a Novel TLR4 Agonist. Cancer Research, 2011, 71, 2858-2870.	0.9	72
22	Mycobacterial Genotypes Are Associated With Clinical Manifestation and Progression of Lung Disease Caused by Mycobacterium abscessus and Mycobacterium massiliense. Clinical Infectious Diseases, 2013, 57, 32-39.	5.8	67
23	Thiopurine Drugs Azathioprine and 6-Mercaptopurine Inhibit <i>Mycobacterium paratuberculosis</i> Growth In Vitro. Antimicrobial Agents and Chemotherapy, 2008, 52, 418-426.	3.2	66
24	Efficient Differentiation of <i>Mycobacterium avium</i> Complex Species and Subspecies by Use of Five-Target Multiplex PCR. Journal of Clinical Microbiology, 2010, 48, 4057-4062.	3.9	61
25	<i>Mycobacterium tuberculosis</i> RpfE promotes simultaneous Th1―and Th17â€type Tâ€cell immunity via TLR4â€dependent maturation of dendritic cells. European Journal of Immunology, 2015, 45, 1957-1971.	2.9	60
26	<i>Mycobacterium tuberculosis</i> RpfB drives Th1-type T cell immunity via a TLR4-dependent activation of dendritic cells. Journal of Leukocyte Biology, 2013, 94, 733-749.	3.3	59
27	Rifabutin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	59
28	Mycobacterium tuberculosis Infection-Driven Foamy Macrophages and Their Implications in Tuberculosis Control as Targets for Host-Directed Therapy. Frontiers in Immunology, 2020, 11, 910.	4.8	58
29	Targeting of Mycobacterium tuberculosis Heparin-Binding Hemagglutinin to Mitochondria in Macrophages. PLoS Pathogens, 2011, 7, e1002435.	4.7	56
30	Discrimination between Active and Latent Tuberculosis Based on Ratio of Antigen-Specific to Mitogen-Induced IP-10 Production. Journal of Clinical Microbiology, 2015, 53, 504-510.	3.9	55
31	The Genome Sequence of â€ ⁻ Mycobacterium massiliense' Strain CIP 108297 Suggests the Independent Taxonomic Status of the Mycobacterium abscessus Complex at the Subspecies Level. PLoS ONE, 2013, 8, e81560.	2.5	54
32	<i>Mycobacterium tuberculosis</i> Rv0652 stimulates production of tumour necrosis factor and monocytes chemoattractant proteinâ€1 in macrophages through the Tollâ€like receptor 4 pathway. Immunology, 2012, 136, 231-240.	4.4	48
33	Oral Macrolide Therapy Following Short-term Combination Antibiotic Treatment of Mycobacterium massiliense Lung Disease. Chest, 2016, 150, 1211-1221.	0.8	48
34	Mycobacteriological characteristics and treatment outcomes in extrapulmonary Mycobacterium abscessus complex infections. International Journal of Infectious Diseases, 2017, 60, 49-56.	3.3	46
35	Development of Macrolide Resistance and Reinfection in Refractory <i>Mycobacterium avium</i> Complex Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1322-1330.	5.6	46
36	<i>In Vitro</i> Activity of Bedaquiline and Delamanid against Nontuberculous Mycobacteria, Including Macrolide-Resistant Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	44

#	Article	IF	CITATIONS
37	Clinical Characteristics and Treatment Outcomes of Patients with Acquired Macrolide-Resistant Mycobacterium abscessus Lung Disease. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	44
38	Peak Plasma Concentration of Azithromycin and Treatment Responses in Mycobacterium avium Complex Lung Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 6076-6083.	3.2	43
39	Rv0315, a novel immunostimulatory antigen of Mycobacterium tuberculosis, activates dendritic cells and drives Th1 immune responses. Journal of Molecular Medicine, 2012, 90, 285-298.	3.9	42
40	<i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> Fibronectin Attachment Protein Activates Dendritic Cells and Induces a Th1 Polarization. Infection and Immunity, 2009, 77, 2979-2988.	2.2	41
41	Amikacin Inhalation as Salvage Therapy for Refractory Nontuberculous Mycobacterial Lung Disease. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	41
42	In Vitro Cellular Immune Responses to Recombinant Antigens of Mycobacterium avium subsp. paratuberculosis. Infection and Immunity, 2005, 73, 5074-5085.	2.2	40
43	Improved Sensitivity of Diagnosis of Tuberculosis in Patients in Korea via a Cocktail Enzyme-Linked Immunosorbent Assay Containing the Abundantly Expressed Antigens of the K Strain of <i>Mycobacterium tuberculosis</i> . Vaccine Journal, 2008, 15, 1788-1795.	3.1	40
44	Induction of antigen-specific immune responses by oral vaccination withSaccharomyces cerevisiaeexpressingActinobacillus pleuropneumoniaeApxIIA. FEMS Immunology and Medical Microbiology, 2005, 43, 155-164.	2.7	39
45	Diagnosis of Bovine Paratuberculosis by a Novel Enzyme-Linked Immunosorbent Assay Based on Early Secreted Antigens of <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> . Vaccine Journal, 2008, 15, 1277-1281.	3.1	39
46	Distribution and clinical significance of Mycobacterium avium complex species isolated from respiratory specimens. Diagnostic Microbiology and Infectious Disease, 2017, 88, 125-137.	1.8	39
47	Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. Infection, Genetics and Evolution, 2019, 72, 169-182.	2.3	39
48	Activities of Moxifloxacin in Combination with Macrolides against Clinical Isolates of Mycobacterium abscessus and Mycobacterium massiliense. Antimicrobial Agents and Chemotherapy, 2012, 56, 3549-3555.	3.2	38
49	Clinical Significance of Mycobacterium kansasii Isolates from Respiratory Specimens. PLoS ONE, 2015, 10, e0139621.	2.5	38
50	Long-term natural history of non-cavitary nodular bronchiectatic nontuberculous mycobacterial pulmonary disease. Respiratory Medicine, 2019, 151, 1-7.	2.9	38
51	Rv2299c, a novel dendritic cell-activating antigen of <i>Mycobacterium tuberculosis</i> , fused-ESAT-6 subunit vaccine confers improved and durable protection against the hypervirulent strain HN878 in mice. Oncotarget, 2017, 8, 19947-19967.	1.8	38
52	Bacterial Outer Membrane Vesicle-Mediated Cytosolic Delivery of Flagellin Triggers Host NLRC4 Canonical Inflammasome Signaling. Frontiers in Immunology, 2020, 11, 581165.	4.8	35
53	Enhancement of Tumor-Specific T Cell–Mediated Immunity in Dendritic Cell–Based Vaccines by <i>Mycobacterium tuberculosis</i> Heat Shock Protein X. Journal of Immunology, 2014, 193, 1233-1245.	0.8	34
54	Characterization, Quantification, and Determination of the Toxicity of Iron Oxide Nanoparticles to the Bone Marrow Cells. International Journal of Molecular Sciences, 2015, 16, 22243-22257.	4.1	33

#	Article	IF	CITATIONS
55	GenoType NTM-DR Performance Evaluation for Identification of Mycobacterium avium Complex and Mycobacterium abscessus and Determination of Clarithromycin and Amikacin Resistance. Journal of Clinical Microbiology, 2019, 57, .	3.9	33
56	Serodiagnosis of Mycobacterium avium Complex and Mycobacterium abscessus Complex Pulmonary Disease by Use of IgA Antibodies to Glycopeptidolipid Core Antigen. Journal of Clinical Microbiology, 2013, 51, 2747-2749.	3.9	32
57	Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species. Journal of Clinical Microbiology, 2017, 55, 2736-2751.	3.9	32
58	Long-term protective efficacy with a BCG-prime ID93/GLA-SE boost regimen against the hyper-virulent Mycobacterium tuberculosis strain K in a mouse model. Scientific Reports, 2019, 9, 15560.	3.3	32
59	<i>Mycobacterium tuberculosis</i> Rv3628 drives Th1-type T cell immunity via TLR2-mediated activation of dendritic cells and displays vaccine potential against the hyper-virulent Beijing K strain. Oncotarget, 2016, 7, 24962-24982.	1.8	32
60	In vivo efficacy of combination of colistin with fosfomycin or minocycline in a mouse model of multidrug-resistant Acinetobacter baumannii pneumonia. Scientific Reports, 2019, 9, 17127.	3.3	31
61	Differentially expressed genes in Mycobacterium tuberculosis H37Rv under mild acidic and hypoxic conditions. Journal of Medical Microbiology, 2008, 57, 1473-1480.	1.8	30
62	Draft Genome Sequence of Mycobacterium abscessus subsp. bolletii BDT. Journal of Bacteriology, 2012, 194, 2756-2757.	2.2	30
63	Severe vitamin <scp>D</scp> deficiency is associated with nonâ€tuberculous mycobacterial lung disease: A caseâ€control study. Respirology, 2013, 18, 983-988.	2.3	30
64	Peptidylarginine deiminase inhibition impairs Toll-like receptor agonist-induced functional maturation of dendritic cells, resulting in the loss of T cell-proliferative capacity: a partial mechanism with therapeutic potential in inflammatory settings. Journal of Leukocyte Biology, 2015, 97, 351-362.	3.3	30
65	Efficient Differentiation of Mycobacterium abscessus Complex Isolates to the Species Level by a Novel PCR-Based Variable-Number Tandem-Repeat Assay. Journal of Clinical Microbiology, 2011, 49, 1107-1109.	3.9	29
66	Development of a Polymerase Chain Reaction Test to Confirm <i>Mycobacterium Avium</i> Subsp. <i>Paratuberculosis</i> in Culture. Journal of Veterinary Diagnostic Investigation, 2004, 16, 116-120.	1.1	28
67	Nucleotide-Binding Oligomerization Domain 2 Contributes to Limiting Growth of Mycobacterium abscessus in the Lung of Mice by Regulating Cytokines and Nitric Oxide Production. Frontiers in Immunology, 2017, 8, 1477.	4.8	28
68	Treatment outcomes of macrolide-susceptible Mycobacterium abscessus lung disease. Diagnostic Microbiology and Infectious Disease, 2018, 90, 293-295.	1.8	28
69	Mycobacterium tuberculosis GrpE, A Heat-Shock Stress Responsive Chaperone, Promotes Th1-Biased T Cell Immune Response via TLR4-Mediated Activation of Dendritic Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 95.	3.9	28
70	Novel vaccine potential of Rv3131, a DosR regulon-encoded putative nitroreductase, against hyper-virulent Mycobacterium tuberculosis strain K. Scientific Reports, 2017, 7, 44151.	3.3	27
71	Clinical Characteristics and Treatment Outcomes of Patients with Macrolide-Resistant Mycobacterium massiliense Lung Disease. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	27
72	Anti-Alpha-Enolase Antibody as a Serologic Marker and Its Correlation with Disease Severity in Intestinal Behçet's Disease. Digestive Diseases and Sciences, 2011, 56, 812-818.	2.3	26

Sung Jae Shin

#	Article	IF	CITATIONS
73	Complete genome sequence of Mycobacterium tuberculosis K from a Korean high school outbreak, belonging to the Beijing family. Standards in Genomic Sciences, 2015, 10, 78.	1.5	26
74	Virulence-Dependent Alterations in the Kinetics of Immune Cells during Pulmonary Infection by Mycobacterium tuberculosis. PLoS ONE, 2015, 10, e0145234.	2.5	26
75	Successful antibiotic treatment of pulmonary disease caused by Mycobacterium abscessus subsp. abscessus with C-to-T mutation at position 19 in erm(41) gene: case report. BMC Infectious Diseases, 2016, 16, 207.	2.9	26
76	Clinical characteristics and treatment outcomes of pulmonary disease caused by Mycobacterium chimaera. Diagnostic Microbiology and Infectious Disease, 2016, 86, 382-384.	1.8	26
77	Cisplatin induces tolerogenic dendritic cells in response to TLR agonists via the abundant production of IL-10, thereby promoting Th2- and Tr1-biased T-cell immunity. Oncotarget, 2016, 7, 33765-33782.	1.8	26
78	Importance of Reciprocal Balance of T Cell Immunity in Mycobacterium abscessus Complex Lung Disease. PLoS ONE, 2014, 9, e109941.	2.5	25
79	High virulent clinical isolates of Mycobacterium abscessus from patients with the upper lobe fibrocavitary form of pulmonary disease. Microbial Pathogenesis, 2009, 47, 321-328.	2.9	24
80	Mycobacterium tuberculosis lpdC, Rv0462, induces dendritic cell maturation and Th1 polarization. Biochemical and Biophysical Research Communications, 2011, 411, 642-647.	2.1	24
81	Nontuberculous Mycobacterial Lung Diseases Caused by Mixed Infection with Mycobacterium avium Complex and Mycobacterium abscessus Complex. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	24
82	Association between 16S rRNA gene mutations and susceptibility to amikacin in Mycobacterium avium Complex and Mycobacterium abscessus clinical isolates. Scientific Reports, 2021, 11, 6108.	3.3	24
83	Mycobacterium paratuberculosis CobT Activates Dendritic Cells via Engagement of Toll-like Receptor 4 Resulting in Th1 Cell Expansion*. Journal of Biological Chemistry, 2012, 287, 38609-38624.	3.4	23
84	Importance of differential identification of Mycobacterium tuberculosis strains for understanding differences in their prevalence, treatment efficacy, and vaccine development. Journal of Microbiology, 2018, 56, 300-311.	2.8	23
85	Comparative antibody response of five recombinant antigens in related to bacterial shedding levels and development of serological diagnosis based on 35 kDa antigen for Mycobacterium avium subsp. paratuberculosis. Journal of Veterinary Science, 2004, 5, 111.	1.3	22
86	Immunization with Mycobacterium tuberculosis–Specific Antigens Bypasses T Cell Differentiation from Prior Bacillus Calmette–Guérin Vaccination and Improves Protection in Mice. Journal of Immunology, 2020, 205, 2146-2155.	0.8	22
87	Identification of seroreactive proteins in the culture filtrate antigen of <i>Mycobacterium avium</i> ssp. <i>paratuberculosis</i> human isolates to sera from Crohn's disease patients. FEMS Immunology and Medical Microbiology, 2010, 58, 128-137.	2.7	21
88	Serum inflammatory profiles in pulmonary tuberculosis and their association with treatment response. Journal of Proteomics, 2016, 149, 23-30.	2.4	21
89	Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K. Vaccine, 2016, 34, 2179-2187.	3.8	21
90	Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in Macrophages via TLRs-mediated signaling. Cytokine, 2018, 104, 104-109.	3.2	21

#	Article	IF	CITATIONS
91	Antigen-Specific IFN-γ/IL-17-Co-Producing CD4+ T-Cells are the Determinants for Protective Efficacy of Tuberculosis Subunit Vaccine. Vaccines, 2020, 8, 300.	4.4	21
92	Differential immune response of adipocytes to virulent and attenuated Mycobacterium tuberculosis. Microbes and Infection, 2011, 13, 1242-1251.	1.9	20
93	Differentiation of Antigen-Specific T Cells with Limited Functional Capacity during Mycobacterium tuberculosis Infection. Infection and Immunity, 2014, 82, 132-139.	2.2	20
94	A Novel Therapeutic Approach Using Mesenchymal Stem Cells to Protect Against <i>Mycobacterium abscessus</i> . Stem Cells, 2016, 34, 1957-1970.	3.2	20
95	Mycobacterium tuberculosis PE27 activates dendritic cells and contributes to Th1-polarized memory immune responses during in vivo infection. Immunobiology, 2016, 221, 440-453.	1.9	20
96	miRNA Expression Profiles and Potential as Biomarkers in Nontuberculous Mycobacterial Pulmonary Disease. Scientific Reports, 2020, 10, 3178.	3.3	19
97	RG-II from Panax ginseng C.A. Meyer suppresses asthmatic reaction. BMB Reports, 2012, 45, 79-84.	2.4	19
98	Critical role of TRIF and MyD88 in Mycobacterium tuberculosis Hsp70-mediated activation of dendritic cells. Cytokine, 2015, 71, 139-144.	3.2	18
99	Mutations in <i>gyrA</i> and <i>gyrB</i> in Moxifloxacin-Resistant Mycobacterium avium Complex and Mycobacterium abscessus Complex Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2018, 62,	3.2	18
100	Differential Genotyping of Mycobacterium avium Complex and Its Implications in Clinical and Environmental Epidemiology. Microorganisms, 2020, 8, 98.	3.6	18
101	Changes in serum immunomolecules during antibiotic therapy for <i>Mycobacterium avium</i> complex lung disease. Clinical and Experimental Immunology, 2014, 176, 93-101.	2.6	17
102	Response to Switch from Intermittent Therapy to Daily Therapy for Refractory Nodular Bronchiectatic Mycobacterium avium Complex Lung Disease. Antimicrobial Agents and Chemotherapy, 2015, 59, 4994-4996.	3.2	17
103	The role of nucleotide-binding oligomerization domain 1 during cytokine production by macrophages in response to Mycobacterium tuberculosis infection. Immunobiology, 2016, 221, 70-75.	1.9	17
104	Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 635335.	3.9	17
105	Molecular analysis of clinical isolates previously diagnosed as Mycobacterium intracellulare reveals incidental findings of "Mycobacterium indicus pranii―genotypes in human lung infection. BMC Infectious Diseases, 2015, 15, 406.	2.9	16
106	A novel PPE39 from Mycobacterium tuberculosis strain Beijing/K induces Th1 polarization via dendritic cell maturation. Journal of Cell Science, 2019, 132, .	2.0	16
107	Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (Treatment Shortening of MDR-TB Using) Tj ETQq1	1 0.784314 1.6	rgBT /Overlo 16
108	open-label clinical trial. Trials, 2019, 20, 57. Protein arginine methyltransferase 1 contributes to the development of allergic rhinitis by promoting the production of epithelial-derived cytokines. Journal of Allergy and Clinical Immunology, 2021, 147, 1720-1731.	2.9	16

#	Article	IF	CITATIONS
109	Enhancement of protective immune responses by oral vaccination with Saccharomyces cerevisiae expressing recombinant Actinobacillus pleuropneumoniae ApxIA or ApxIIA in mice. Journal of Veterinary Science, 2007, 8, 383.	1.3	15
110	<i>The Mycobacterium avium</i> subsp. <i>paratuberculosis</i> fibronectin attachment protein, a toll-like receptor 4 agonist, enhances dendritic cell-based cancer vaccine potency. Experimental and Molecular Medicine, 2012, 44, 340.	7.7	15
111	First case of nontuberculous mycobacterial lung disease caused by Mycobacterium marseillense in a patient with systemic lupus erythematosus. Diagnostic Microbiology and Infectious Disease, 2014, 79, 355-357.	1.8	15
112	Intermittent Antibiotic Therapy for Recurrent Nodular Bronchiectatic Mycobacterium avium Complex Lung Disease. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	15
113	Mycobacterium tuberculosis MmsA, a novel immunostimulatory antigen, induces dendritic cell activation and promotes Th1 cell-type immune responses. Cellular Immunology, 2015, 298, 115-125.	3.0	14
114	Combination of TLR1/2 and TLR3 ligands enhances CD4+ T cell longevity and antibody responses by modulating type I IFN production. Scientific Reports, 2016, 6, 32526.	3.3	14
115	Comparison of immunogenicity and vaccine efficacy between heat-shock proteins, HSP70 and GrpE, in the DnaK operon of Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 14411.	3.3	14
116	An Alternative Dendritic Cell-Induced Murine Model of Asthma Exhibiting a Robust Th2/Th17-Skewed Response. Allergy, Asthma and Immunology Research, 2020, 12, 537.	2.9	14
117	Mycobacterium abscessus MAB2560 induces maturation of dendritic cells via Toll-like receptor 4 and drives Th1 immune response. BMB Reports, 2014, 47, 512-517.	2.4	14
118	Clinical significance of Mycobacterium szulgai isolates from respiratory specimens. Scandinavian Journal of Infectious Diseases, 2014, 46, 169-174.	1.5	13
119	Essential Engagement of Toll-Like Receptor 2 in Initiation of Early Protective Th1 Response against Rough Variants of Mycobacterium abscessus. Infection and Immunity, 2015, 83, 1556-1567.	2.2	13
120	A Clofazimine-Containing Regimen Confers Improved Treatment Outcomes in Macrophages and in a Murine Model of Chronic Progressive Pulmonary Infection Caused by the Mycobacterium avium Complex. Frontiers in Microbiology, 2020, 11, 626216.	3.5	13
121	Experimental Reactivation of Pulmonary Mycobacterium avium Complex Infection in a Modified Cornell-Like Murine Model. PLoS ONE, 2015, 10, e0139251.	2.5	13
122	The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4. BMB Reports, 2014, 47, 115-120.	2.4	13
123	Virulenceâ€dependent induction of interleukinâ€10â€producingâ€tolerogenic dendritic cells by <i>Mycobacterium tuberculosis</i> impedes optimal T helper type 1 proliferation. Immunology, 2017, 151, 177-190.	4.4	12
124	B Cell-Based Vaccine Transduced With ESAT6-Expressing Vaccinia Virus and Presenting α-Galactosylceramide Is a Novel Vaccine Candidate Against ESAT6-Expressing Mycobacterial Diseases. Frontiers in Immunology, 2019, 10, 2542.	4.8	12
125	Characteristics of Circulating CD4+ T Cell Subsets in Patients with Mycobacterium avium Complex Pulmonary Disease. Journal of Clinical Medicine, 2020, 9, 1331.	2.4	12
126	Association of ISMav6 with the Pattern of Antibiotic Resistance in Korean Mycobacterium avium Clinical Isolates but No Relevance between Their Genotypes and Clinical Features. PLoS ONE, 2016, 11, e0148917.	2.5	12

Sung Jae Shin

#	Article	IF	CITATIONS
127	<i>Mycobacterium tuberculosis</i> ESAT6 Drives the Activation and Maturation of Bone Marrow-Derived Dendritic Cells via TLR4-Mediated Signaling. Immune Network, 2019, 19, e13.	3.6	12
128	DNA immunization of <i>Mycobacterium tuberculosis</i> resuscitation-promoting factor B elicits polyfunctional CD8 ⁺ T cell responses. Clinical and Experimental Vaccine Research, 2014, 3, 235.	2.2	11
129	Infection of Dendritic Cells With Mycobacterium avium subspecies hominissuis Exhibits a Functionally Tolerogenic Phenotype in Response to Toll-Like Receptor Agonists via IL-10/Cox2/PGE2/EP2 Axis. Frontiers in Microbiology, 2019, 10, 1795.	3.5	11
130	Species Distribution and Macrolide Susceptibility of <i>Mycobacterium fortuitum</i> Complex Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
131	Blockade of translationally controlled tumor protein attenuated the aggressiveness of fibroblast-like synoviocytes and ameliorated collagen-induced arthritis. Experimental and Molecular Medicine, 2021, 53, 67-80.	7.7	11
132	Two Distinct Subsets Are Identified from the Peritoneal Myeloid Mononuclear Cells Expressing both CD11c and CD115. Immune Network, 2019, 19, e15.	3.6	11
133	Viral coinfection promotes tuberculosis immunopathogenesis by type I IFN signaling-dependent impediment of Th1 cell pulmonary influx. Nature Communications, 2022, 13, .	12.8	11
134	Comparative analysis of immune responses to Mycobacterium abscessus infection and its antigens in two murine models. Journal of Microbiology, 2009, 47, 633-40.	2.8	10
135	Disseminated Infection Due toMycobacterium aviumSubsp.aviumin an Asian Elephant (Elephas maximus). Journal of Zoo and Wildlife Medicine, 2011, 42, 743-746.	0.6	10
136	Impaired Expression of MAPK Is Associated with the Downregulation of TNF-α, IL-6, and IL-10 inMycobacterium abscessusLung Disease. Tuberculosis and Respiratory Diseases, 2012, 72, 275.	1.8	10
137	Changes in Serum IgA Antibody Levels against the Glycopeptidolipid Core Antigen during Antibiotic Treatment of <i>Mycobacterium avium</i> Complex Lung Disease. Japanese Journal of Infectious Diseases, 2017, 70, 582-585.	1.2	10
138	Genetic mutations in linezolid-resistant Mycobacterium avium complex and Mycobacterium abscessus clinical isolates. Diagnostic Microbiology and Infectious Disease, 2019, 94, 38-40.	1.8	10
139	Genetic Involvement of Mycobacterium avium Complex in the Regulation and Manipulation of Innate Immune Functions of Host Cells. International Journal of Molecular Sciences, 2021, 22, 3011.	4.1	10
140	Comparative antibody response of five recombinant antigens in related to bacterial shedding levels and development of serological diagnosis based on 35 kDa antigen for Mycobacterium avium subsp. paratuberculosis. Journal of Veterinary Science, 2004, 5, 111-7.	1.3	10
141	Rapid Mycobacterial Liquid Culture-Screening Method for Mycobacterium avium Complex Based on Secreted Antigen-Capture Enzyme-Linked Immunosorbent Assay. Vaccine Journal, 2009, 16, 613-620.	3.1	9
142	Production of and applications for a polyclonal IgY diagnostic reagent specific for Mycobacterium avium subsp. paratuberculosis. Journal of Microbiology, 2009, 47, 600-609.	2.8	9
143	First Case of Segniliparus rotundus Pneumonia in a Patient with Bronchiectasis. Journal of Clinical Microbiology, 2011, 49, 3403-3405.	3.9	9
144	Nontuberculous Mycobacterial Lung Disease Caused byMycobacterium lentiflavumin a Patient with Bronchiectasis. Tuberculosis and Respiratory Diseases, 2013, 74, 187.	1.8	9

#	Article	IF	CITATIONS
145	Characterization of a novel antigen of Mycobacterium tuberculosis K strain and its use in immunodiagnosis of tuberculosis. Journal of Microbiology, 2014, 52, 871-878.	2.8	9
146	Naturally-Occurring Polymorphisms in QcrB Are Responsible for Resistance to Telacebec in <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2019, 5, 2055-2060.	3.8	9
147	Immunogenicity and Vaccine Potential of InsB, an ESAT-6-Like Antigen Identified in the Highly Virulent Mycobacterium tuberculosis Beijing K Strain. Frontiers in Microbiology, 2019, 10, 220.	3.5	9
148	Vaccine efficacy of a <i>Mycobacterium tuberculosis</i> Beijingâ€specific prolineâ€glutamic acid (PE) antigen against highly virulent outbreak isolates. FASEB Journal, 2019, 33, 6483-6496.	0.5	9
149	Toll-like receptor 4 signaling-mediated responses are critically engaged in optimal host protection against highly virulent <i>Mycobacterium tuberculosis</i> K infection. Virulence, 2020, 11, 430-445.	4.4	9
150	Repeated Aerosolized-Boosting with Gamma-Irradiated Mycobacterium bovis BCG Confers Improved Pulmonary Protection against the Hypervirulent Mycobacterium tuberculosis Strain HN878 in Mice. PLoS ONE, 2015, 10, e0141577.	2.5	9
151	Potentiation of Th1-Type Immune Responses to Mycobacterium tuberculosis Antigens in Mice by Cationic Liposomes Combined with De-O-Acylated Lipooligosaccharide. Journal of Microbiology and Biotechnology, 2018, 28, 136-144.	2.1	9
152	Type I Interferons Are Involved in the Intracellular Growth Control of Mycobacterium abscessus by Mediating NOD2-Induced Production of Nitric Oxide in Macrophages. Frontiers in Immunology, 2021, 12, 738070.	4.8	9
153	Polymerase chain reaction–restriction fragment length polymorphism of the rpoB gene for identification of Mycobacterium avium subsp. paratuberculosis and differentiation of Mycobacterium avium subspecies. Diagnostic Microbiology and Infectious Disease, 2011, 70, 65-71.	1.8	8
154	Recent research on bovine paratuberculosis in South Korea. Veterinary Immunology and Immunopathology, 2012, 148, 23-28.	1.2	8
155	Current Understanding ofMycobacterium abscessusInfection. Journal of Bacteriology and Virology, 2012, 42, 17.	0.1	8
156	Aminated nanomicelles as a designer vaccine adjuvant to trigger inflammasomes and multiple arms of the innate immune response in lymph nodes. International Journal of Nanomedicine, 2017, Volume 12, 7501-7517.	6.7	8
157	A novel Th1-type T-cell immunity-biasing effect of malate dehydrogenase derived from Mycobacterium avium subspecies paratuberculosis via the activation of dendritic cells. Cytokine, 2018, 104, 14-22.	3.2	8
158	IL-15 Generates IFN-Î ³ -producing Cells Reciprocally Expressing Lymphoid-Myeloid Markers during Dendritic Cell Differentiation. International Journal of Biological Sciences, 2019, 15, 464-480.	6.4	8
159	3D Imaging of the Transparent Mycobacterium tuberculosis-Infected Lung Verifies the Localization of Innate Immune Cells With Granuloma. Frontiers in Cellular and Infection Microbiology, 2020, 10, 226.	3.9	8
160	Understanding the Reciprocal Interplay Between Antibiotics and Host Immune System: How Can We Improve the Anti-Mycobacterial Activity of Current Drugs to Better Control Tuberculosis?. Frontiers in Immunology, 2021, 12, 703060.	4.8	8
161	Chronological changes in the systemic manifestations of intestinal Behcet's disease and their significance in diagnosis. International Journal of Colorectal Disease, 2010, 25, 1371-1376.	2.2	7
162	Lithium inhibits growth of intracellular Mycobacterium kansasii through enhancement of macrophage apoptosis. Journal of Microbiology, 2014, 52, 299-306.	2.8	7

#	Article	IF	CITATIONS
163	Preclinical assessment of a new live attenuated Mycobacterium tuberculosis Beijing-based vaccine for tuberculosis. Vaccine, 2020, 38, 1416-1423.	3.8	7
164	Plant-Produced N-glycosylated Ag85A Exhibits Enhanced Vaccine Efficacy Against Mycobacterium tuberculosis HN878 Through Balanced Multifunctional Th1 T Cell Immunity. Vaccines, 2020, 8, 189.	4.4	7
165	Differential Immune Responses to Segniliparus rotundus and Segniliparus rugosus Infection and Analysis of Their Comparative Virulence Profiles. PLoS ONE, 2013, 8, e59646.	2.5	7
166	Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. FEMS Microbiology Letters, 2008, 282, 282-289.	1.8	6
167	Characterization of Immune Responses to Mycobacterium tuberculosis Rv2041c Protein. Journal of Bacteriology and Virology, 2009, 39, 183.	0.1	6
168	Induction of macrophage death by clinical strains of Mycobacterium kansasii. Microbial Pathogenesis, 2010, 48, 160-167.	2.9	6
169	TLR2 contributes to trigger immune response of pleural mesothelial cells against Mycobacterium bovis BCG and M. tuberculosis infection. Cytokine, 2017, 95, 80-87.	3.2	6
170	Vaccine potential of ESAT-6 protein fused with consensus CD4+ T-cell epitopes of PE/PPE proteins against highly pathogenic Mycobacterium tuberculosis strain HN878. Biochemical and Biophysical Research Communications, 2018, 503, 2195-2201.	2.1	6
171	Heat shock protein X purified from Mycobacterium tuberculosis enhances the efficacy of dendritic cells-based immunotherapy for the treatment of allergic asthma. BMB Reports, 2015, 48, 178-183.	2.4	6
172	Mycobacterium abscessus á´alanyl-á´alanine dipeptidase induces the maturation of dendritic cells and promotes Th1-biased immunity. BMB Reports, 2016, 49, 554-559.	2.4	6
173	Characterization and identification of distinct Mycobacterium massiliense extracellular proteins from those of Mycobacterium abscessus. Journal of Microbiology, 2010, 48, 502-511.	2.8	5
174	Conversion of Mycobacterium smegmatis to a pathogenic phenotype via passage of epithelial cells during macrophage infection. Medical Microbiology and Immunology, 2011, 200, 177-191.	4.8	5
175	Nontuberculous Mycobacterial Lung Disease Caused by <i>Mycobacterium shinjukuense</i> : The First Reported Case in Korea. Tuberculosis and Respiratory Diseases, 2015, 78, 416.	1.8	5
176	MAP1981c, a Putative Nucleic Acid-Binding Protein, Produced by Mycobacterium avium subsp. paratuberculosis, Induces Maturation of Dendritic Cells and Th1-Polarization. Frontiers in Cellular and Infection Microbiology, 2018, 8, 206.	3.9	5
177	Construction and Characterization of the Mycobacterium tuberculosis sigE fadD26 Unmarked Double Mutant as a Vaccine Candidate. Infection and Immunity, 2019, 88, .	2.2	5
178	B-CELL EPITOPE SPECIFICITY OF CARBOXY TERMINUS OFMYCOBACTERIUM PARATUBERCULOSISModD. Journal of Immunoassay and Immunochemistry, 2010, 31, 181-192.	1.1	4
179	Nontuberculous Mycobacterial Lung Disease Caused by <i>Mycobacterium chelonae</i> : A Case Report. Tuberculosis and Respiratory Diseases, 2013, 74, 191.	1.8	4
180	Nontuberculous Mycobacterial Lung Disease Caused by <i>Mycobacterium simiae</i> : The First Reported Case in South Korea. Tuberculosis and Respiratory Diseases, 2015, 78, 432.	1.8	4

#	Article	IF	CITATIONS
181	Does the Effectiveness and Mechanical Strength of Kanamycin-Loaded Bone Cement in Musculoskeletal Tuberculosis Compare to Vancomycin-Loaded Bone Cement. Journal of Arthroplasty, 2020, 35, 864-869.	3.1	4
182	Fms-Like Tyrosine Kinase 3-Independent Dendritic Cells Are Major Mediators of Th2 Immune Responses in Allergen-Induced Asthmatic Mice. International Journal of Molecular Sciences, 2020, 21, 9508.	4.1	4
183	Hostâ€directed antiâ€mycobacterial activity of colchicine, an antiâ€gout drug, via strengthened host innate resistance reinforced by the ILâ€1β/PGE ₂ axis. British Journal of Pharmacology, 2022, 179, 3951-3969.	5.4	4
184	Peptidylarginine Deiminase and Citrullination: Potential Therapeutic Targets for Inflammatory Diseases. Journal of Bacteriology and Virology, 2013, 43, 159.	0.1	3
185	Mycobacterium bovisBacillus Calmette-Guerin (BCG) and BCG-based Vaccines Against Tuberculosis. Journal of Bacteriology and Virology, 2014, 44, 236.	0.1	3
186	The First Korean Case of Nontuberculous Mycobacterial Lung Disease Caused by <i>Mycobacterium abscessus</i> Subspecies <i>bolletii</i> in a Patient with Bronchiectasis. Tuberculosis and Respiratory Diseases, 2014, 76, 30.	1.8	3
187	Expression of apxIA of Actinobacillus pleuropneumoniae in Saccharomyces cerevisiae. Journal of Veterinary Science, 2003, 4, 225-8.	1.3	3
188	Vaccination inducing durable and robust antigen-specific Th1/Th17 immune responses contributes to prophylactic protection against <i>Mycobacterium avium</i> infection but is ineffective as an adjunct to antibiotic treatment in chronic disease. Virulence, 2022, 13, 808-832.	4.4	3
189	First Case of Pulmonary Disease Caused by a Mycobacterium avium Complex Strain of Presumed Veterinary Origin in an Adult Human Patient. Journal of Clinical Microbiology, 2013, 51, 1993-1995.	3.9	2
190	Exacerbation of <i>Mycobacterium avium</i> pulmonary infection by comorbid allergic asthma is associated with diminished mycobacterium-specific Th17 responses. Virulence, 2021, 12, 2546-2561.	4.4	2
191	Nontuberculous Mycobacterial Lung Disease Caused byMycobacterium terraein a Patient with Bronchiectasis. Tuberculosis and Respiratory Diseases, 2012, 72, 173.	1.8	1
192	Leptin: A Multifunctional Role as an Immunomodulator in Mycobacterial Lung Disease. Journal of Bacteriology and Virology, 2013, 43, 1.	0.1	1
193	Differentiation of Antigen-Specific T Cells with Limited Functional Capacity during Mycobacterium tuberculosis Infection. Infection and Immunity, 2014, 82, 3514-3514.	2.2	1
194	Immunomodulatory Roles of PE/PPE Proteins and Their Implications in Genomic Features of <i>Mycobacterium tuberculosis </i> . Journal of Bacteriology and Virology, 2015, 45, 272.	0.1	1
195	Down-Regulation of Serum High-Mobility Group Box 1 Protein in Patients with Pulmonary Tuberculosis and Nontuberculous Mycobacterial Lung Disease. Tuberculosis and Respiratory Diseases, 2017, 80, 153.	1.8	1
196	Identification of nontuberculous mycobacteria isolated from household showerheads of patients with nontuberculous mycobacteria. Scientific Reports, 2022, 12, .	3.3	1
197	Apoptotic Effect of Macrophages againstMycobacterium tuberculosis. Journal of Bacteriology and Virology, 2016, 46, 312.	0.1	0
198	A predictive model for the level of sIgA based on IgG levels following the oral administration of antigens expressed in Saccharomyces cerevisiae. Journal of Veterinary Science, 2005, 6, 305-9.	1.3	0