
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7589887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multimodal in vivo Imaging of the Integrated Postnatal Development of Brain and Skull and Its Co-modulation With Neurodevelopment in a Down Syndrome Mouse Model. Frontiers in Medicine, 2022, 9, 815739.	1.2	4
2	COVID-19 Vaccination of Individuals with Down Syndrome—Data from the Trisomy 21 Research Society Survey on Safety, Efficacy, and Factors Associated with the Decision to Be Vaccinated. Vaccines, 2022, 10, 530.	2.1	8
3	Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine, 2022, 77, 103914.	2.7	3
4	Lamivudine, a reverse transcriptase inhibitor, rescues cognitive deficits in a mouse model of down syndrome. Journal of Cellular and Molecular Medicine, 2022, 26, 4210-4215.	1.6	9
5	Green tea extracts containing epigallocatechin-3-gallate modulate facial development in Down syndrome. Scientific Reports, 2021, 11, 4715.	1.6	15
6	Effects of COVID-19 Home Confinement on Mental Health in Individuals with Increased Risk of Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 79, 1015-1021.	1.2	8
7	Medical vulnerability of individuals with Down syndrome to severe COVID-19–data from the Trisomy 21 Research Society and the UK ISARIC4C survey. EClinicalMedicine, 2021, 33, 100769.	3.2	73
8	Specific Susceptibility to COVID-19 in Adults with Down Syndrome. NeuroMolecular Medicine, 2021, 23, 561-571.	1.8	30
9	Altered Genetic Expression Disrupts Facial Ontogenetic Trajectory in Down Syndrome and <i>DYRK1A</i> Haploinsufficiency. FASEB Journal, 2021, 35, .	0.2	0
10	Environmental Enrichment Induces Epigenomic and Genome Organization Changes Relevant for Cognition. Frontiers in Molecular Neuroscience, 2021, 14, 664912.	1.4	12
11	Immune Dysregulation and the Increased Risk of Complications and Mortality Following Respiratory Tract Infections in Adults With Down Syndrome. Frontiers in Immunology, 2021, 12, 621440.	2.2	26
12	Editorial: Brain Insulin Resistance in Neurodevelopmental and Neurodegenerative Disorders: Mind the Gap!. Frontiers in Neuroscience, 2021, 15, 730378.	1.4	4
13	Comparison of COVID-19 and Non-COVID-19 Pneumonia in Down Syndrome. Journal of Clinical Medicine, 2021, 10, 3748.	1.0	7
14	Meta-analysis of transcriptomic data reveals clusters of consistently deregulated gene and disease ontologies in Down syndrome. PLoS Computational Biology, 2021, 17, e1009317.	1.5	13
15	Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society. Molecular Syndromology, 2021, 12, 202-218.	0.3	6
16	Network analysis of Down syndrome and SARS-CoV-2 identifies risk and protective factors for COVID-19. Scientific Reports, 2021, 11, 1930.	1.6	35
17	COVID-19 in Children with Down Syndrome: Data from the Trisomy 21 Research Society Survey. Journal of Clinical Medicine, 2021, 10, 5125.	1.0	24
18	Social Factors Influence Behavior in the Novel Object Recognition Task in a Mouse Model of Down Syndrome. Frontiers in Behavioral Neuroscience, 2021, 15, 772734.	1.0	7

#	Article	IF	CITATIONS
19	Effect of epigallocatechin gallate on the body composition and lipid profile of down syndrome individuals: Implications for clinical management. Clinical Nutrition, 2020, 39, 1292-1300.	2.3	23
20	A phase 1, randomized double-blind, placebo controlled trial to evaluate safety and efficacy of epigallocatechin-3-gallate and cognitive training in adults with Fragile X syndrome. Clinical Nutrition, 2020, 39, 378-387.	2.3	16
21	The Value of Mouse Models of Rare Diseases: A Spanish Experience. Frontiers in Genetics, 2020, 11, 583932.	1.1	12
22	Down Syndrome Is a Metabolic Disease: Altered Insulin Signaling Mediates Peripheral and Brain Dysfunctions. Frontiers in Neuroscience, 2020, 14, 670.	1.4	48
23	Lessons from individuals with Down syndrome during COVID-19. Lancet Neurology, The, 2020, 19, 974-975.	4.9	5
24	Rethinking Intellectual Disability from Neuro- to Astro-Pathology. International Journal of Molecular Sciences, 2020, 21, 9039.	1.8	10
25	Re-establishment of the epigenetic state and rescue of kinome deregulation in Ts65Dn mice upon treatment with green tea extract and environmental enrichment. Scientific Reports, 2020, 10, 16023.	1.6	15
26	Behavioral Phenotyping for Down Syndrome in Mice. Current Protocols in Mouse Biology, 2020, 10, e79.	1.2	8
27	ViceCT and whiceCT for simultaneous high-resolution visualization of craniofacial, brain and ventricular anatomy from micro-computed tomography. Scientific Reports, 2020, 10, 18772.	1.6	4
28	Prefrontal–hippocampal functional connectivity encodes recognition memory and is impaired in intellectual disability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11788-11798.	3.3	45
29	Ethanol-Induced Changes in Brain of Transgenic Mice Overexpressing DYRK1A. Molecular Neurobiology, 2020, 57, 3195-3205.	1.9	3
30	Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. Progress in Brain Research, 2020, 251, 269-302.	0.9	13
31	A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction. Nature Communications, 2020, 11, 782.	5.8	70
32	Molecular Rescue of Dyrk1A Overexpression Alterations in Mice with Fontup® Dietary Supplement: Role of Green Tea Catechins. International Journal of Molecular Sciences, 2020, 21, 1404.	1.8	16
33	Translational validity and implications of pharmacotherapies in preclinical models of Down syndrome. Progress in Brain Research, 2020, 251, 245-268.	0.9	16
34	Cannabinoid type-1 receptor blockade restores neurological phenotypes in two models for Down syndrome. Neurobiology of Disease, 2019, 125, 92-106.	2.1	26
35	Pergola-web: a web server for the visualization and analysis of longitudinal behavioral data using repurposed genomics tools and standards. Nucleic Acids Research, 2019, 47, W600-W604.	6.5	2
36	DYRK1A Overexpression Alters Cognition and Neural-Related Proteomic Pathways in the Hippocampus That Are Rescued by Green Tea Extract and/or Environmental Enrichment. Frontiers in Molecular Neuroscience, 2019, 12, 272.	1.4	21

#	Article	IF	CITATIONS
37	Metabolomics predicts the pharmacological profile of new psychoactive substances. Journal of Psychopharmacology, 2019, 33, 347-354.	2.0	21
38	Protocol for Measuring Compulsive-like Feeding Behavior in Mice. Bio-protocol, 2019, 9, e3308.	0.2	1
39	Extinction and reinstatement of an operant responding maintained by food in different models of obesity. Addiction Biology, 2018, 23, 544-555.	1.4	11
40	Timeâ€course and dynamics of obesityâ€related behavioral changes induced by energyâ€dense foods in mice. Addiction Biology, 2018, 23, 531-543.	1.4	13
41	Increased levels of inflammatory plasma markers and obesity risk in a mouse model of Down syndrome. Free Radical Biology and Medicine, 2018, 114, 122-130.	1.3	21
42	Paving the Way for Therapy: The Second International Conference of the Trisomy 21 Research Society. Molecular Syndromology, 2018, 9, 279-286.	0.3	8
43	Pergola: Boosting Visualization and Analysis of Longitudinal Data by Unlocking Genomic Analysis Tools. IScience, 2018, 9, 244-257.	1.9	5
44	Neuroprotective Properties of Wine. , 2018, , 271-284.		0
45	Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. ELife, 2018, 7, .	2.8	38
46	Computational Models. , 2018, , 105-131.		2
47	Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. European Neuropsychopharmacology, 2018, 28, 675-690.	0.3	14
48	Overweight Mice Show Coordinated Homeostatic and Hedonic Transcriptional Response across Brain. ENeuro, 2018, 5, ENEURO.0287-18.2018.	0.9	1
49	Anomalous White Matter Structure and the Effect of Age in Down Syndrome Patients. Journal of Alzheimer's Disease, 2017, 57, 61-70.	1.2	32
50	New murine Niemann-Pick type C models bearing a pseudoexon-generating mutation recapitulate the main neurobehavioural and molecular features of the disease. Scientific Reports, 2017, 7, 41931.	1.6	23
51	Loss of <scp>SIRT</scp> 2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell, 2017, 16, 1404-1413.	3.0	36
52	Infralimbic Neurotrophin-3 Infusion Rescues Fear Extinction Impairment in a Mouse Model of Pathological Fear. Neuropsychopharmacology, 2017, 42, 462-472.	2.8	13
53	Where Environment Meets Cognition: A Focus on Two Developmental Intellectual Disability Disorders. Neural Plasticity, 2016, 2016, 1-20.	1.0	18
54	VNTR-DAT1 and COMTVal158Met Genotypes Modulate Mental Flexibility and Adaptive Behavior Skills in Down Syndrome. Frontiers in Behavioral Neuroscience, 2016, 10, 193.	1.0	10

#	Article	IF	CITATIONS
55	Overexpression of <i>Dyrk1A</i> , a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex. Journal of Neuroscience, 2016, 36, 3648-3659.	1.7	54
56	Changing Paradigms in Down Syndrome: The First International Conference of the Trisomy 21 Research Society. Molecular Syndromology, 2016, 7, 251-261.	0.3	16
57	Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2016, 15, 801-810.	4.9	227
58	Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Translational Psychiatry, 2016, 6, e718-e718.	2.4	137
59	Reduced cortical neurotransmitter receptor complex levels in fetal Down syndrome brain. Amino Acids, 2016, 48, 103-116.	1.2	8
60	Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome. ENeuro, 2016, 3, ENEURO.0103-16.2016.	0.9	42
61	Potential Role of (-)-Epigallocatechin-3-Gallate (EGCG) in the Secondary Prevention of Alzheimer Disease. Current Drug Targets, 2016, 18, 174-195.	1.0	51
62	Genome-wide miR-155 and miR-802 target gene identification in the hippocampus of Ts65Dn Down syndrome mouse model by miRNA sponges. BMC Genomics, 2015, 16, 907.	1.2	30
63	Semantic Verbal Fluency Pattern, Dementia Rating Scores and Adaptive Behavior Correlate With Plasma Aβ42 Concentrations in Down Syndrome Young Adults. Frontiers in Behavioral Neuroscience, 2015, 9, 301.	1.0	23
64	Principal Component Analysis of the Effects of Environmental Enrichment and (-)-epigallocatechin-3-gallate on Age-Associated Learning Deficits in a Mouse Model of Down Syndrome. Frontiers in Behavioral Neuroscience, 2015, 9, 330.	1.0	44
65	A new cognitive evaluation battery for Down syndrome and its relevance for clinical trials. Frontiers in Psychology, 2015, 6, 708.	1.1	53
66	RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse. Brain Structure and Function, 2015, 220, 3113-3130.	1.2	10
67	Opposite Phenotypes of Muscle Strength and Locomotor Function in Mouse Models of Partial Trisomy and Monosomy 21 for the Proximal Hspa13-App Region. PLoS Genetics, 2015, 11, e1005062.	1.5	39
68	From neural to genetic substrates of panic disorder: Insights from human and mouse studies. European Journal of Pharmacology, 2015, 759, 127-141.	1.7	14
69	A cluster of protein kinases and phosphatases modulated in fetal Down syndrome (trisomy 21) brain. Amino Acids, 2015, 47, 1127-1134.	1.2	3
70	Potential Role of Olive Oil Phenolic Compounds in the Prevention of Neurodegenerative Diseases. Molecules, 2015, 20, 4655-4680.	1.7	181
71	New Perspectives for the Rescue of Cognitive Disability in Down Syndrome. Journal of Neuroscience, 2015, 35, 13843-13852.	1.7	28
72	Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome. Cortex, 2015, 64, 148-156.	1.1	64

#	Article	IF	CITATIONS
73	DREAM Controls the On/Off Switch of Specific Activity-Dependent Transcription Pathways. Molecular and Cellular Biology, 2014, 34, 877-887.	1.1	41
74	Cognition and Hippocampal Plasticity in the Mouse Is Altered by Monosomy of a Genomic Region Implicated in Down Syndrome. Genetics, 2014, 197, 899-912.	1.2	18
75	Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice. Acta Neuropathologica Communications, 2014, 2, 147.	2.4	6
76	The α3β4* nicotinic <scp>ACh</scp> receptor subtype mediates physical dependence to morphine: mouse and human studies. British Journal of Pharmacology, 2014, 171, 3845-3857.	2.7	34
77	Epigallocatechinâ€3â€gallate, a DYRK1A inhibitor, rescues cognitive deficits in <scp>D</scp> own syndrome mouse models and in humans. Molecular Nutrition and Food Research, 2014, 58, 278-288.	1.5	234
78	Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiology of Disease, 2014, 69, 65-75.	2.1	104
79	Heterozygous deletion of the Williams–Beuren syndrome critical interval in mice recapitulates most features of the human disorder. Human Molecular Genetics, 2014, 23, 6481-6494.	1.4	69
80	Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: Implications for Down syndrome. Neurobiology of Disease, 2014, 63, 92-106.	2.1	17
81	The role of nicotinic receptors in shaping and functioning of the glutamatergic system: A window into cognitive pathology. Neuroscience and Biobehavioral Reviews, 2014, 46, 315-325.	2.9	25
82	Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nature Medicine, 2013, 19, 603-607.	15.2	203
83	Carnitine palmitoyltransferase 1C deficiency causes motor impairment and hypoactivity. Behavioural Brain Research, 2013, 256, 291-297.	1.2	38
84	Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes. Neuron, 2013, 79, 1152-1168.	3.8	254
85	Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A. Neurobiology of Disease, 2013, 60, 18-31.	2.1	66
86	A commentary on: Overexpression of Dyrk1A inhibits choline acetyltransferase induction by oleic acid in cellular models of Down syndrome. Experimental Neurology, 2013, 247, 110-112.	2.0	0
87	Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiology of Disease, 2013, 52, 117-127.	2.1	67
88	<scp>AGC</scp> 1â€malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. Journal of Neurochemistry, 2013, 124, 347-362.	2.1	15
89	Functional implications of hippocampal adult neurogenesis in intellectual disabilities. Amino Acids, 2013, 45, 113-131.	1.2	13
90	DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. Brain, 2013, 136, 3018-3027.	3.7	129

#	Article	lF	CITATIONS
91	Hippocampal Hyperexcitability Underlies Enhanced Fear Memories in Tg <i>NTRK3</i> , a Panic Disorder Mouse Model. Journal of Neuroscience, 2013, 33, 15259-15271.	1.7	30
92	Dyrk1A Is Dynamically Expressed on Subsets of Motor Neurons and in the Neuromuscular Junction: Possible Role in Down Syndrome. PLoS ONE, 2013, 8, e54285.	1.1	26
93	NGF Upregulates the Plasminogen Activation Inhibitor-1 in Neurons via the Calcineurin/NFAT Pathway and the Down Syndrome-Related Proteins DYRK1A and RCAN1 Attenuate This Effect. PLoS ONE, 2013, 8, e67470.	1.1	15
94	Neuropathology and Synaptic Alterations in Neurodevelopmental Disorders. , 2013, , 980-994.		0
95	Preface. Progress in Brain Research, 2012, 197, vii.	0.9	0
96	Dyrk1A Influences Neuronal Morphogenesis Through Regulation of Cytoskeletal Dynamics in Mammalian Cortical Neurons. Cerebral Cortex, 2012, 22, 2867-2877.	1.6	84
97	Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3136-45.	3.3	155
98	Down syndrome: the brain in trisomic mode. Nature Reviews Neuroscience, 2012, 13, 844-858.	4.9	230
99	Ceramide Levels Regulated by Carnitine Palmitoyltransferase 1C Control Dendritic Spine Maturation and Cognition. Journal of Biological Chemistry, 2012, 287, 21224-21232.	1.6	71
100	Overexpression of α3/α5/β4 nicotinic receptor subunits modifies impulsive-like behavior. Drug and Alcohol Dependence, 2012, 122, 247-252.	1.6	12
101	Aberrant brain microRNA target and miRISC gene expression in the anx/anx anorexia mouse model. Gene, 2012, 497, 181-190.	1.0	12
102	Therapeutic approaches in the improvement of cognitive performance in Down syndrome. Progress in Brain Research, 2012, 197, 1-14.	0.9	53
103	Reduced Mid1 Expression and Delayed Neuromotor Development in daDREAM Transgenic Mice. Frontiers in Molecular Neuroscience, 2012, 5, 58.	1.4	15
104	Overexpression of the CHRNA5/A3/B4 genomic cluster in mice increases the sensitivity to nicotine and modifies its reinforcing effects. Amino Acids, 2012, 43, 897-909.	1.2	36
105	Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice. Alcohol, 2012, 46, 205-215.	0.8	30
106	Behavioral Characterization of a Mouse Model Overexpressing DSCR1/ RCAN1. PLoS ONE, 2011, 6, e17010.	1.1	42
107	RhoE Deficiency Produces Postnatal Lethality, Profound Motor Deficits and Neurodevelopmental Delay in Mice. PLoS ONE, 2011, 6, e19236.	1.1	39
108	Effects of age on α1-adrenoceptor subtypes in the heart ventricular muscle of the rat. Journal of Pharmacy and Pharmacology, 2011, 45, 907-909.	1.2	8

#	Article	IF	CITATIONS
109	A gel-based proteomic method reveals several protein pathway abnormalities in fetal Down syndrome brain. Journal of Proteomics, 2011, 74, 547-557.	1.2	25
110	G-Protein-Associated Signal Transduction Processes Are Restored after Postweaning Environmental Enrichment in Ts65Dn, a Down Syndrome Mouse Model. Developmental Neuroscience, 2011, 33, 442-450.	1.0	19
111	Overexpression of Reelin Prevents the Manifestation of Behavioral Phenotypes Related to Schizophrenia and Bipolar Disorder. Neuropsychopharmacology, 2011, 36, 2395-2405.	2.8	85
112	In vivo effects of APP are not exacerbated by BACE2 co-overexpression: behavioural characterization of a double transgenic mouse model. Amino Acids, 2010, 39, 1571-1580.	1.2	24
113	Cognitive deficits and associated neurological complications in individuals with Down's syndrome. Lancet Neurology, The, 2010, 9, 623-633.	4.9	372
114	Susceptibility to stress in transgenic mice overexpressing TrkC, a model of panic disorder. Journal of Psychiatric Research, 2010, 44, 157-167.	1.5	18
115	β-amyloid controls altered Reelin expression and processing in Alzheimer's disease. Neurobiology of Disease, 2010, 37, 682-691.	2.1	53
116	Engineering DYRK1A overdosage yields Down syndrome-characteristic cortical splicing aberrations. Neurobiology of Disease, 2010, 40, 348-359.	2.1	49
117	Characterization of a mouse model overexpressing betaâ€site APPâ€cleaving enzyme 2 reveals a new role for BACE2. Genes, Brain and Behavior, 2010, 9, 160-172.	1.1	23
118	Down Syndrome: From Understanding the Neurobiology to Therapy. Journal of Neuroscience, 2010, 30, 14943-14945.	1.7	133
119	Monoamine deficits in the brain of methyl-CpG binding protein 2 null mice suggest the involvement of the cerebral cortex in early stages of Rett syndrome. Neuroscience, 2010, 170, 453-467.	1.1	40
120	Insights from Mouse Models to Understand Neurodegeneration in Down Syndrome. CNS and Neurological Disorders - Drug Targets, 2010, 9, 429-438.	0.8	8
121	Increased opioid dependence in a mouse model of panic disorder. Frontiers in Behavioral Neuroscience, 2009, 3, 60.	1.0	10
122	Aneuploidy: From a Physiological Mechanism of Variance to Down Syndrome. Physiological Reviews, 2009, 89, 887-920.	13.1	106
123	A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Human Molecular Genetics, 2009, 18, 4756-4769.	1.4	101
124	Age-associated motor and visuo-spatial learning phenotype in Dyrk1A heterozygous mutant mice. Neurobiology of Disease, 2009, 36, 312-319.	2.1	24
125	RESEARCH FOCUS ON COMPULSIVE BEHAVIOUR IN ANIMALS: An animal model of compulsive foodâ€ŧaking behaviour. Addiction Biology, 2009, 14, 373-383.	1.4	63
126	Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: Involvement of phospholipaseCl ³ activity and glutamate receptor expression. Neuroscience, 2009, 158, 1234-1250.	1.1	98

#	Article	IF	CITATIONS
127	Protein expression of BACE1, BACE2 and APP in Down syndrome brains. Amino Acids, 2008, 35, 339-343.	1.2	77
128	Targeting Dyrk1A with AAVshRNA Attenuates Motor Alterations in TgDyrk1A, a Mouse Model of Down Syndrome. American Journal of Human Genetics, 2008, 83, 479-488.	2.6	60
129	Increased NR2A expression and prolonged decay of NMDA-induced calcium transient in cerebellum of TgDyrk1A mice, a mouse model of Down syndrome. Neurobiology of Disease, 2008, 32, 377-384.	2.1	41
130	Association of NTRK3 and its interaction with NGF suggest an altered cross-regulation of the neurotrophin signaling pathway in eating disorders. Human Molecular Genetics, 2008, 17, 1234-1244.	1.4	50
131	Fibrinogen drives dystrophic muscle fibrosis via a TGFβ/alternative macrophage activation pathway. Genes and Development, 2008, 22, 1747-1752.	2.7	222
132	Hypothalamus transcriptome profile suggests an anorexia-cachexia syndrome in the anx/anx mouse model. Physiological Genomics, 2008, 35, 341-350.	1.0	22
133	Impaired Spatial Learning Strategies and Novel Object Recognition in Mice Haploinsufficient for the Dual Specificity Tyrosine-Regulated Kinase-1A (Dyrk1A). PLoS ONE, 2008, 3, e2575.	1.1	87
134	Dissociation between CA3-CA1 Synaptic Plasticity and Associative Learning in TgNTRK3 Transgenic Mice. Journal of Neuroscience, 2007, 27, 2253-2260.	1.7	44
135	uPA deficiency exacerbates muscular dystrophy in MDX mice. Journal of Cell Biology, 2007, 179, 165-165.	2.3	1
136	uPA deficiency exacerbates muscular dystrophy in <i>MDX</i> mice. Journal of Cell Biology, 2007, 178, 1039-1051.	2.3	66
137	Fetal Down Syndrome Brains Exhibit Aberrant Levels of Neurotransmitters Critical for Normal Brain Development. Pediatrics, 2007, 120, e1465-e1471.	1.0	101
138	Dopaminergic deficiency in mice with reduced levels of the dual-specificity tyrosine-phosphorylated and regulated kinase 1A, Dyrk1A+/?. Genes, Brain and Behavior, 2007, 6, 569-578.	1.1	25
139	Understanding the human brain through mouse models. Genes, Brain and Behavior, 2007, 6, 1-1.	1.1	203
140	Candidate genes for panic disorder: insight from human and mouse genetic studies. Genes, Brain and Behavior, 2007, 6, 2-23.	1.1	25
141	Differential responses to anxiogenic drugs in a mouse model of panic disorder as revealed by Fos immunocytochemistry in specific areas of the fear circuitry. Amino Acids, 2007, 33, 677-688.	1.2	13
142	DYRK1A (Dual-Specificity Tyrosine-Phosphorylated and -Regulated Kinase 1A): A Gene with Dosage Effect During Development and Neurogenesis. Scientific World Journal, The, 2006, 6, 1911-1922.	0.8	81
143	Brain G protein-dependent signaling pathways in Down syndrome and Alzheimer's disease. Amino Acids, 2006, 31, 449-456.	1.2	18
144	Pitfalls And Hopes in Down Syndrome Therapeutic Approaches: In the Search for Evidence-Based Treatments. Behavior Genetics, 2006, 36, 454-468.	1.4	17

#	Article	IF	CITATIONS
145	Dendritic pathology in mental retardation: from molecular genetics to neurobiology. Genes, Brain and Behavior, 2006, 5, 48-60.	1.1	166
146	Transgenic mice overexpressing the full-length neurotrophin receptor TrkC exhibit increased catecholaminergic neuron density in specific brain areas and increased anxiety-like behavior and panic reaction. Neurobiology of Disease, 2006, 24, 403-418.	2.1	50
147	Alterations in the phenotype of neocortical pyramidal cells in the Dyrk1A+/â^' mouse. Neurobiology of Disease, 2005, 20, 115-122.	2.1	94
148	Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiology of Disease, 2005, 20, 392-400.	2.1	152
149	Deficits of neuronal density in CA1 and synaptic density in the dentate gyrus, CA3 and CA1, in a mouse model of Down syndrome. Brain Research, 2004, 1022, 101-109.	1.1	108
150	On dendrites in Down syndrome and DS murine models: a spiny way to learn. Progress in Neurobiology, 2004, 74, 111-126.	2.8	124
151	Motor phenotypic alterations in TgDyrk1a transgenic mice implicate DYRK1A in Down syndrome motor dysfunction. Neurobiology of Disease, 2004, 15, 132-142.	2.1	75
152	Haploinsufficiency of Dyrk1A in Mice Leads to Specific Alterations in the Development and Regulation of Motor Activity Behavioral Neuroscience, 2004, 118, 815-821.	0.6	61
153	Dyrk1A expression pattern supports specific roles of this kinase in the adult central nervous system. Brain Research, 2003, 964, 250-263.	1.1	125
154	Special interest section - Down's syndrome: postgenomic approaches to neurobiological problems. Genes, Brain and Behavior, 2003, 2, 152-155.	1.1	5
155	Alterations of Neocortical Pyramidal Cell Phenotype in the Ts65Dn Mouse Model of Down Syndrome: Effects of Environmental Enrichment. Cerebral Cortex, 2003, 13, 758-764.	1.6	136
156	Long-Chain Polyunsaturated Fatty Acids in Rat Maternal Milk, Offspring Brain and Peripheral Tissues in Essential Fatty Acid Deficiency. Clinical Chemistry and Laboratory Medicine, 2002, 40, 278-84.	1.4	7
157	Postnatal Handling Induces Long-term Modifications in Central β-noradrenergic Signalling in Rats. Stress, 2002, 5, 137-147.	0.8	9
158	Dyrk1A Haploinsufficiency Affects Viability and Causes Developmental Delay and Abnormal Brain Morphology in Mice. Molecular and Cellular Biology, 2002, 22, 6636-6647.	1.1	306
159	Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behavioural Brain Research, 2002, 134, 185-200.	1.2	156
160	Neurobehavioral development of two mouse lines commonly used in transgenic studies. Pharmacology Biochemistry and Behavior, 2002, 73, 19-25.	1.3	46
161	Proteomic analysis of the fetal brain. Proteomics, 2002, 2, 1547-1576.	1.3	68
162	Murine models for Down syndrome. Physiology and Behavior, 2001, 73, 859-871.	1.0	62

#	Article	IF	CITATIONS
163	Reduced phospholipase C-Î ² activity and isoform expression in the cerebellum of TS65DN mouse: A model of down syndrome. Journal of Neuroscience Research, 2001, 66, 540-550.	1.3	19
164	Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Human Molecular Genetics, 2001, 10, 1915-1923.	1.4	357
165	Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice. Brain Research, 2000, 858, 191-197.	1.1	115
166	The Mouse Brain Transcriptome by SAGE: Differences in Gene Expression between P30 Brains of the Partial Trisomy 16 Mouse Model of Down Syndrome (Ts65Dn) and Normals. Genome Research, 2000, 10, 2006-2021.	2.4	81
167	The Mouse Brain Transcriptome by SAGE: Differences in Gene Expression between P30 Brains of the Partial Trisomy 16 Mouse Model of Down Syndrome (Ts65Dn) and Normals. Genome Research, 2000, 10, 2006-2021.	2.4	13
168	Chapter 5.9 Modelling Down syndrome in mice. Handbook of Behavioral Neuroscience, 1999, 13, 895-913.	0.0	1
169	A murine model for Down syndrome shows reduced responsiveness to pain. NeuroReport, 1999, 10, 1119-1122.	0.6	56
170	Impaired short- and long-term memory in Ts65Dn mice, a model for Down syndrome. Neuroscience Letters, 1998, 247, 171-174.	1.0	149
171	Hippocampal volume and neuronal number in Ts65Dn mice: a murine model of down syndrome. Neuroscience Letters, 1998, 253, 175-178.	1.0	137
172	Cholinergic, serotonergic and catecholaminergic neurons are not affected in Ts65Dn mice. NeuroReport, 1997, 8, 3475-3478.	0.6	29
173	Alterations of central noradrenergic transmission in Ts65Dn mouse, a model for Down syndrome. Brain Research, 1997, 749, 238-244.	1.1	97
174	Impaired cyclic AMP production in the hippocampus of a Down syndrome murine model. Developmental Brain Research, 1996, 95, 122-124.	2.1	48
175	A behavioral assessment of Ts65Dn mice: a putative Down syndrome model. Neuroscience Letters, 1995, 199, 143-146.	1.0	233
176	Action on noradrenergic transmission of an anticholinesterase: 9-amino-1,2,3,4-tetrahydroacridine. Neuropharmacology, 1995, 34, 367-375.	2.0	3
177	Early Environmental Stimulation Produces Long-Lasting Changes on Î ² -Adrenoceptor Transduction System. Neurobiology of Learning and Memory, 1995, 64, 49-57.	1.0	60
178	Synthesis and evaluation of tacrine-related compounds for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 1994, 29, 205-221.	2.6	28
179	Differential effects of physostigmine and 1,2,3,4-tetrahydro-9-aminoacridine on the ß-adrenoceptor transduction system. European Journal of Pharmacology, 1993, 245, 9-13.	2.7	4
180	Potentiation of acute opioid-induced respiratory depression and reversal of tolerance by the calcium antagonist nimodipine in awake rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 633-637.	1.4	14

#	Article	IF	CITATIONS
181	The Ca2+ channel agonist Bay K 8644 induces central respiratory depression in cats, an effect blocked by naloxone. European Journal of Pharmacology, 1993, 240, 155-161.	1.7	6
182	Post-train administration of 9-amino-1,2,3,4-tetrahydroacridine enhances passive avoidance retention and decreases β-adrenoceptor-linked cyclic AMP formation in middle-aged rats. Brain Research, 1992, 586, 117-120.	1.1	10
183	Acute effects of tetrahydroaminoacridine on β-adrenoceptor-linked cyclic AMP accumulation in brain of young and middle-aged rats. Neuroscience Letters, 1991, 132, 51-54.	1.0	5
184	Ca2+ channel modulation by dihydropyridines modifies sufentanil-induced respiratory depression in cats. European Journal of Pharmacology, 1991, 198, 149-155.	1.7	13
185	Calcium channel modulation by dihydropyridines modifies sufentanil-induced antinociception in acute and tolerant conditions. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 342, 559-65.	1.4	53
186	Respiratory actions induced by cholecystokinin at the brainstem level. Peptides, 1988, 9, 809-815.	1.2	13
187	Mechanism of the respiratory action of pentobarbital at the medullary and pontine levels. European Journal of Pharmacology, 1986, 125, 225-232.	1.7	7