Kirsti Jylhä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7589776/publications.pdf Version: 2024-02-01

Κιρςτι Ινι μÃσ

#	Article	IF	CITATIONS
1	Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard. Energy and Buildings, 2012, 47, 53-60.	3.1	134
2	New gridded daily climatology of Finland: Permutationâ€based uncertainty estimates and temporal trends in climate. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3807-3823.	1.2	111
3	Changes in frost, snow and Baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. Climatic Change, 2008, 86, 441-462.	1.7	107
4	Observed and Projected Future Shifts of Climatic Zones in Europe and Their Use to Visualize Climate Change Information. Weather, Climate, and Society, 2010, 2, 148-167.	0.5	104
5	Energy demand for the heating and cooling of residential houses in Finland in a changing climate. Energy and Buildings, 2015, 99, 104-116.	3.1	88
6	Projected changes in European extreme precipitation indices on the basis of global and regional climate model ensembles. International Journal of Climatology, 2014, 34, 1208-1222.	1.5	63
7	Snow cover trends in Finland over 1961–2014 based on gridded snow depth observations. International Journal of Climatology, 2019, 39, 3147-3159.	1.5	42
8	Natural hazards and extreme events in the Baltic Sea region. Earth System Dynamics, 2022, 13, 251-301.	2.7	35
9	Biometeorological Assessment of Mortality Related to Extreme Temperatures in Helsinki Region, Finland, 1972–2014. International Journal of Environmental Research and Public Health, 2017, 14, 944.	1.2	34
10	Multimodel estimates of the changes in the Baltic Sea ice cover during the present century. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 66, 22617.	0.8	25
11	Climate change and reindeer management in Finland: Co-analysis of practitioner knowledge and meteorological data for better adaptation. Science of the Total Environment, 2020, 710, 136229.	3.9	23
12	Temperature-Related Mortality in Helsinki Compared to Its Surrounding Region Over Two Decades, with Special Emphasis on Intensive Heatwaves. Atmosphere, 2021, 12, 46.	1.0	21
13	A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe. Natural Hazards and Earth System Sciences, 2017, 17, 243-259.	1.5	17
14	Regional Assessment of Temperature-Related Mortality in Finland. International Journal of Environmental Research and Public Health, 2018, 15, 406.	1.2	16
15	Overheating Risk and Energy Demand of Nordic Old and New Apartment Buildings during Average and Extreme Weather Conditions under a Changing Climate. Applied Sciences (Switzerland), 2021, 11, 3972.	1.3	15
16	Surface air relative humidities spuriously exceeding 100% in CMIP5 model output and their impact on future projections. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9557-9568.	1.2	11
17	The role of atmospheric circulation patterns in driving recent changes in indices of extreme seasonal precipitation across Arctic Fennoscandia. Climatic Change, 2020, 162, 741-759.	1.7	10
18	Recent meteorological and marine studies to support nuclear power plant safety in Finland. Energy, 2018, 165, 1102-1118.	4.5	9

Kirsti Jylhä

#	Article	IF	CITATIONS
19	User awareness concerning feedback data and input observations used in reanalysis systems. Advances in Science and Research, 2015, 12, 63-67.	1.0	9
20	Impacts of town characteristics on the changing urban climate in Vantaa. Science of the Total Environment, 2020, 727, 138471.	3.9	8
21	Intense sea-effect snowfall case on the western coast of Finland. Advances in Science and Research, 0, 14, 231-239.	1.0	8
22	Evaluation of North Eurasian snow-off dates in the ECHAM5.4 atmospheric general circulation model. Geoscientific Model Development, 2014, 7, 3037-3057.	1.3	5
23	Estimates of Presentâ€Day and Future Climatologies of Freezing Rain in Europe Based on CORDEX Regional Climate Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,291.	1.2	5
24	Tendency towards a more extreme precipitation climate in the Coupled Model Intercomparison Project Phase 5 models. Atmospheric Science Letters, 2019, 20, e895.	0.8	5
25	Statistics of sea-effect snowfall along the Finnish coastline based on regional climate model data. Advances in Science and Research, 0, 17, 87-104.	1.0	4
26	Performance assessment of ventilative and radiant cooling systems in office buildings during extreme weather conditions under a changing climate. Journal of Building Engineering, 2022, 57, 104951.	1.6	2
27	Climatology of seaâ \in effect snow in Finland. International Journal of Climatology, 0, , .	1.5	1
28	Reply to Comment by Genthon et al. on "Surface Air Relative Humidities Spuriously Exceeding 100% in CMIP5 Model Output and Their Impact on Future Projections― Journal of Geophysical Research D: Atmospheres, 2018, 123, 8728-8734.	1.2	0