Thomas Zaslavsky

List of Publications by Year in descending order

Source: https:||exaly.com/author-pdf/7588933/publications.pdf
Version: 2024-02-01

1 Signed graphs. Discrete Applied Mathematics, 1982, 4, 47-74.
0.5
431

Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Memoirs of the American Mathematical Society, 1975, 1, 0-0.

On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes,
4 non-Radon partitions, and orientations of graphs. Transactions of the American Mathematical Society,
0.5

5 Biased graphs. I. Bias, balance, and gains. Journal of Combinatorial Theory Series B, 1989, 47, 32-52.
$0.6 \quad 143$
$6 \quad$ Signed graph coloring. Discrete Mathematics, 1982, 39, 215-228.
19 Biased graphs IV: Geometrical realizations. Journal of Combinatorial Theory Series B, 2003, 89, 231-297. 0.6 31
20 The Geometry of Root Systems and Signed Graphs. American Mathematical Monthly, 1981, 88, 88. 0.2 26
21 The number of nowhere-zero flows on graphs and signed graphs. Journal of Combinatorial Theory 0.6 24
Frame Matroids and Biased Graphs. European Journal of Combinatorics, 1994, 15, 303-307.23
23 An Enumerative Geometry for Magic and Magilatin Labellings. Annals of Combinatorics, 2006, 10, 0.3 20
Biased Graphs .III. Chromatic and Dichromatic Invariants. Journal of Combinatorial Theory Series B,1995, 64, 17-88.
25 Signed analogs of bipartite graphs. Discrete Mathematics, 1998, 179, 205-216. 0.4 19
26 Homomorphisms of signed graphs: An update. European Journal of Combinatorics, 2021, 91, 103222. 0.5 19
27 Biased graphs whose matroids are special binary matroids. Graphs and Combinatorics, 1990, 6, 77-93. 0.2 16
28 The covering radius of the cycle code of a graph. Discrete Applied Mathematics, 1993, 45, 63-70.0.516
29 BICIRCULAR GEOMETRY AND THE LATTICE OF FORESTS OF A GRAPH. Quarterly Journal of Mathematics, 1982, 33, 493-511. 0.3 15
30
Asymptotic expansions of ratios of coefficients of orthogonal polynomials with exponential weights.Transactions of the American Mathematical Society, 1985, 287, 495-495.0.515
31 A Coding Approach to Signed Graphs. SIAM Journal on Discrete Mathematics, 1994, 7, 544-553. 0.4 15
32 Counting the faces of cut-up spaces. Bulletin of the American Mathematical Society, 1975, 81, 916-918.3.014
33 How colorful the signed graph?. Discrete Mathematics, 1984, 52, 279-284. 0.4 14
The slimmest arrangements of hyperplanes: II. Basepointed geometric lattices and Euclidean
arrangements. Mathematika, 1981, 28, 169-190.
43 A simple algorithm that proves half-integrality of bidirected network programming. Networks, 2006,
$48,36-38$.

Signed distance in signed graphs. Linear Algebra and Its Applications, 2021, 608, 236-247.

The biased graphs whose matroids are binary. Journal of Combinatorial Theory Series B, 1987, 42, 337-347.

Lattice point counts for the Shi arrangement and other affinographic hyperplane arrangements.
\square
Negative (and positive) circles in signed graphs: A problem collection. AKCE International Journal of
$0.4 \quad 6$
55 Associativity in multiary quasigroups: the way of biased expansions. Aequationes Mathematicae, 2012,
$83,1-66$.

Lattice points in orthotopes and a huge polynomial Tutte invariant of weighted gain graphs. Journal of Combinatorial Theory Series B, 2016, 118, 186-227.

The Largest Parity Demigenus of a Simple Graph. Journal of Combinatorial Theory Series B, 1997, 70, 325-345.

Biased graphs. VII. Contrabalance and antivoltages. Journal of Combinatorial Theory Series B, 2007, 97,
1019-1040.

Totally frustrated states in the chromatic theory of gain graphs. European Journal of Combinatorics, 2009, 30, 133-156.

Resolution of indecomposable integral flows on signed graphs. Discrete Mathematics, 2017, 340,
1271-1286.

Mock threshold graphs. Discrete Mathematics, 2018, 341, 2159-2178.

EXTREMAL ARRANGEMENTS OF HYPERPLANES. Annals of the New York Academy of Sciences, 1985, 440,
69-87.

On the division of space by topological hyperplanes. European Journal of Combinatorics, 2009, 30,
1835-1845.

64 Six signed Petersen graphs, and their automorphisms. Discrete Mathematics, 2012, 312, 1558-1583.
0.4

3

65 A Unifying Generalization of Spernerâ€ TM_{S} Theorem. Bolyai Society Mathematical Studies, 2006, , 9-24.
0.3

3

A \$q\$-Queens Problem. I. General Theory. Electronic Journal of Combinatorics, 2014, 21, .
0.2

3

The Signed Chromatic Number of the Projective Plane and Klein Bottle and Antipodal Graph Coloring.
Journal of Combinatorial Theory Series B, 1995, 63, 136-145.

68 The largest demigenus of a bipartite signed graph. Discrete Mathematics, 2001, 232, 189-193.
0.4

A Meshalkin theorem for projective geometries. Journal of Combinatorial Theory - Series A, 2003, 102,
433-441.

Cycle and circle tests of balance in gain graphs: Forbidden minors and their groups. Journal of Graph
Theory, 2006, 51, 1-21.

71 Forbidden Induced Subgraphs. Electronic Notes in Discrete Mathematics, 2017, 63, 3-10.
0.4

Transitive closure and transitive reduction in bidirected graphs. , 2019, 69, 295-315.

```
7 3 \text { The characteristic polynomial of a graph containing loops. Discrete Applied Mathematics, 2021, 300,}
97-106.
```

$0.5 \quad 2$

74 A q-queens problem. VI. The bishops' period. Ars Mathematica Contemporanea, 2019, 16, 549-561.
0.3

Characterization of line-consistent signed graphs. Discussiones Mathematicae - Graph Theory, 2015, 35,
0.2 589.

Correction to â€œComplementary Matching Vectors and the Uniform Matching Extension Propertyâ€:
European Journal of Combinatorics, 1981, 2, 305.
$0.5 \quad 1$

77 Avoiding the Identity: 10606. American Mathematical Monthly, 1999, 106, 590.
$0.2 \quad 1$

78 Title is missing!. Geometriae Dedicata, 2003, 98, 63-80.
$0.1 \quad 1$

79 Negative Circles in Signed Graphs: A Problem Collection. Electronic Notes in Discrete Mathematics,
2017, 63, 41-47.
0.4

A <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="dle1280"
80 altimg="si703.svg">mml:miq</mml:mi></mml:math>-Queens Problem IV. Attacking configurations and
$0.4 \quad 1$ their denominators. Discrete Mathematics, 2020, 343, 111649.

81 Two Hamiltonian cycles. Discrete Mathematics, 2022, 345, 112797.
0.4

1

82 Uniform Distribution of a Subgraph in a Graph. North-Holland Mathematics Studies, 1983, 75, 657-664.
0.2

0
83 Quasigroup associativity and biased expansion graphs. Electronic Research Announcements in
Mathematical Sciences, 2006, 12, 13-18.
0.7
0

84 Nonattacking Queens in a Rectangular Strip. Annals of Combinatorics, 2010, 14, 419-441.
0.3

0
85 Determinants in the Kronecker product of matrices: the incidence matrix of a complete graph. Linear and Multilinear Algebra, 2011, 59, 399-411.
0.5

0

86 Biased graphs. VI. synthetic geometry. European Journal of Combinatorics, 2019, 81, 119-141.
0.5

0

87 The Tutte decomposition. , 1986, , 267-331.
0

88 The dynamic of the forest graph operator. Discussiones Mathematicae - Graph Theory, 2016, 36, 899.
0.2

0

