Jens Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7588071/publications.pdf

Version: 2024-02-01

66234 118652 5,502 191 42 62 citations h-index g-index papers 191 191 191 4162 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	8
2	Influence of Si doping and O2 flow on arc-deposited (Al,Cr)2O3 coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 061516.	0.9	3
3	Silicon carbonitride thin films deposited by reactive high power impulse magnetron sputtering. Surface and Coatings Technology, 2018, 335, 248-256.	2.2	14
4	Resolving mass spectral overlaps in atom probe tomography by isotopic substitutions – case of TiSi15N. Ultramicroscopy, 2018, 184, 51-60.	0.8	4
5	Effect of ion-implantation-induced defects and Mg dopants on the thermoelectric properties of ScN. Physical Review B, 2018, 98, .	1.1	31
6	Energy loss and straggling of MeV Si ions in gases. Nuclear Instruments & Methods in Physics Research B, 2017, 391, 20-26.	0.6	0
7	V0.5Mo0.5Nx/MgO(001): Composition, nanostructure, and mechanical properties as a function of film growth temperature. Acta Materialia, 2017, 126, 194-201.	3.8	23
8	Wet-cleaning of MgO(001): Modification of surface chemistry and effects on thin film growth investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	63
9	Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS. Journal of Instrumentation, 2017, 12, P04030-P04030.	0.5	29
10	Formation of hydroxyapatite on titanium implants <i>in vivo</i> precedes bone-formation during healing. Biointerphases, 2017, 12, 041002.	0.6	5
11	Age hardening in (Ti 1â^'x Al x)B 2+Î" thin films. Scripta Materialia, 2017, 127, 122-126.	2.6	38
12	Stoichiometric silicon oxynitride thin films reactively sputtered in Ar/N2O plasmas by HiPIMS. Journal Physics D: Applied Physics, 2016, 49, 135309.	1.3	2
13	Experimental and theoretical investigation of $Cr1$ -xScxN solid solutions for thermoelectrics. Journal of Applied Physics, 2016, 120, .	1.1	33
14	Synthesis of hydrogenated diamondlike carbon thin films using neon–acetylene based high power impulse magnetron sputtering discharges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, 061504.	0.9	18
15	Impact of nitrogen vacancies on the high temperature behavior of (Ti1â^'xAlx)Ny alloys. Acta Materialia, 2016, 119, 218-228.	3.8	41
16	Low-temperature growth of boron carbide coatings by direct current magnetron sputtering and high-power impulse magnetron sputtering. Journal of Materials Science, 2016, 51, 10418-10428.	1.7	44
17	SiN _{<i>x</i>} Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering: Process Parameters Influencing the Nitrogen Content. ACS Applied Materials & Amp; Interfaces, 2016, 8, 20385-20395.	4.0	28
18	Trimethylboron as Single-Source Precursor for Boron–Carbon Thin Film Synthesis by Plasma Chemical Vapor Deposition. Journal of Physical Chemistry C, 2016, 120, 21990-21997.	1.5	11

#	Article	IF	CITATIONS
19	Ab initio calculations and experimental study of piezoelectric Y In1â^N thin films deposited using reactive magnetron sputter epitaxy. Acta Materialia, 2016, 105, 199-206.	3.8	20
20	A comparative study of direct current magnetron sputtering and high power impulse magnetron sputtering processes for CNx thin film growth with different inert gases. Diamond and Related Materials, 2016, 64, 13-26.	1.8	20
21	Investigation of background in large-area neutron detectors due to alpha emission from impurities in aluminium. Journal of Instrumentation, 2015, 10, P10019-P10019.	0.5	7
22	Infrared dielectric functions and optical phonons of wurtzite Y _{<i>x</i>} Al _{1â^<i>x</i>} N (0  ⩽  6€‰6€‰6€‰6€‰6€‰6€ 48, 415102.	E‰ 10322). ∫	lou ta al Physid
23	Synthesis and characterization of Zr2Al3C4 thin films. Thin Solid Films, 2015, 595, 142-147.	0.8	10
24	Growth and oxidization stability of cubic Zr1â^'xGdxN solid solution thin films. Journal of Applied Physics, 2015, 117, 195301.	1.1	0
25	Stability of 10B4C thin films under neutron radiation. Radiation Physics and Chemistry, 2015, 113, 14-19.	1.4	53
26	Novel hard, tough HfAlSiN multilayers, defined by alternating Si bond structure, deposited using modulated high-flux, low-energy ion irradiation of the growing film. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	7
27	UV-black rutile TiO2: An antireflective photocatalytic nanostructure. Journal of Applied Physics, 2015, 117, 074903.	1.1	22
28	Control of Ti1â^'xSixN nanostructure via tunable metal-ion momentum transfer during HIPIMS/DCMS co-deposition. Surface and Coatings Technology, 2015, 280, 174-184.	2.2	53
29	Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	18
30	Gas phase chemical vapor deposition chemistry of triethylboron probed by boron–carbon thin film deposition and quantum chemical calculations. Journal of Materials Chemistry C, 2015, 3, 10898-10906.	2.7	24
31	Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	17
32	Self-organized anisotropic (Zr1 \hat{a} °Si)N nanocomposites grown by reactive sputter deposition. Acta Materialia, 2015, 82, 179-189.	3.8	27
33	Vacancy-induced toughening in hard single-crystal V 0.5 Mo 0.5 N \times /MgO(0 0 1) thin films. Acta Materialia, 2014, 77, 394-400.	3.8	75
34	Reactive sputtering of \hat{l} -ZrH2 thin films by high power impulse magnetron sputtering and direct current magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	7
35	Growth and properties of amorphous Ti–B–Si–N thin films deposited by hybrid HIPIMS/DC-magnetron co-sputtering from TiB2 and Si targets. Surface and Coatings Technology, 2014, 259, 442-447.	2.2	11
36	Thermal stability and mechanical properties of amorphous coatings in the Ti-B-Si-Al-N system grown by cathodic arc evaporation from TiB2, Ti33Al67, and Ti85Si15 cathodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	9

#	Article	IF	Citations
37	Direct current magnetron sputtered ZrB2 thin films on 4H-SiC(0001) and Si(100). Thin Solid Films, 2014, 550, 285-290.	0.8	35
38	Structure and composition of Al(Si)CuFe approximant thin films formed by Si substrate diffusion. Thin Solid Films, 2014, 550, 105-109.	0.8	1
39	Î ² -Ta and α-Cr thin films deposited by high power impulse magnetron sputtering and direct current magnetron sputtering in hydrogen containing plasmas. Physica B: Condensed Matter, 2014, 439, 3-8.	1.3	10
40	A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering. Surface and Coatings Technology, 2014, 257, 15-25.	2.2	126
41	Principles for designing sputtering-based strategies for high-rate synthesis of dense and hard hydrogenated amorphous carbon thin films. Diamond and Related Materials, 2014, 44, 117-122.	1.8	16
42	Effect of WN content on toughness enhancement in $V1\hat{a}^2xWxN/MgO(001)$ thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	45
43	Strain-free, single-phase metastable Ti0.38Al0.62N alloys with high hardness: metal-ion energy vs. momentum effects during film growth by hybrid high-power pulsed/dc magnetron cosputtering. Thin Solid Films, 2014, 556, 87-98.	0.8	69
44	X-ray Photoelectron Spectroscopy Analyses of the Electronic Structure of Polycrystalline Ti1-xAlxN Thin Films with 0â€‰â‰æ€‰xâ€‰â‰æ€‰0.96. Surface Science Spectra, 2014, 21, 35-49.	0.3	20
45	Influence of Ar and N2Pressure on Plasma Chemistry, Ion Energy, and Thin Film Composition During Filtered Arc Deposition From Ti3SiC2Cathodes. IEEE Transactions on Plasma Science, 2014, 42, 3498-3507.	0.6	3
46	Influence of pulse power amplitude on plasma properties and film deposition in high power pulsed plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 030602.	0.9	5
47	Si incorporation in Ti1â^ $^{\circ}$ xSixN films grown on TiN(001) and (001)-faceted TiN(111) columns. Surface and Coatings Technology, 2014, 257, 121-128.	2.2	25
48	Selective binding of oligonucleotide on TiO 2 surfaces modified by swift heavy ion beam lithography. Nuclear Instruments & Methods in Physics Research B, 2014, 339, 67-74.	0.6	5
49	Energy-loss straggling of 2–10 MeV/u Kr ions in gases. European Physical Journal D, 2013, 67, 1.	0.6	13
50	Influence of inert gases on the reactive high power pulsed magnetron sputtering process of carbon-nitride thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	18
51	Reactive high power impulse magnetron sputtering of CFx thin films in mixed Ar/CF4 and Ar/C4F8 discharges. Thin Solid Films, 2013, 542, 21-30.	0.8	17
52	Influence of Ti–Si cathode grain size on the cathodic arc process and resulting Ti–Si–N coatings. Surface and Coatings Technology, 2013, 235, 637-647.	2,2	16
53	Structural and mechanical properties of corundum and cubic (Al Cr1â°)2+O3â° coatings grown by reactive cathodic arc evaporation in as-deposited and annealed states. Acta Materialia, 2013, 61, 4811-4822.	3.8	29
54	10B multi-grid proportional gas counters for large area thermal neutron detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 720, 116-121.	0.7	33

#	Article	IF	CITATIONS
55	Phase stability and initial low-temperature oxidation mechanism of Ti2AlC thin films. Journal of the European Ceramic Society, 2013, 33, 375-382.	2.8	45
56	Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions. Journal of Applied Physics, 2013, 113, 163304.	1.1	22
57	Toughness enhancement in hard ceramic thin films by alloy design. APL Materials, 2013, 1, .	2.2	109
58	Epitaxial V0.6W0.4N/MgO(001): Evidence for ordering on the cation sublattice. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	15
59	Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1â^'xN thin films. Journal of Applied Physics, 2012, 111, .	1.1	93
60	B4C thin films for neutron detection. Journal of Applied Physics, 2012, 111, .	1.1	128
61	Room-temperature heteroepitaxy of single-phase Al1â^xlnxN films with full composition range on isostructural wurtzite templates. Thin Solid Films, 2012, 524, 113-120.	0.8	24
62	ZrB2 thin films grown by high power impulse magnetron sputtering from a compound target. Thin Solid Films, 2012, 526, 163-167.	0.8	58
63	Growth of High Quality Epitaxial Rhombohedral Boron Nitride. Crystal Growth and Design, 2012, 12, 3215-3220.	1.4	60
64	A novel high-power pulse PECVD method. Surface and Coatings Technology, 2012, 206, 4562-4566.	2.2	24
65	Ti–B–C nanocomposite coatings deposited by magnetron sputtering. Applied Surface Science, 2012, 258, 9907-9912.	3.1	25
66	Growth and characterization of epitaxial Ti3GeC2 thin films on 4H-SiC(0001). Journal of Crystal Growth, 2012, 343, 133-137.	0.7	9
67	Structural and mechanical properties of Cr–Al–O–N thin films grown by cathodic arc deposition. Acta Materialia, 2012, 60, 6494-6507.	3.8	65
68	Arc deposition of Ti–Si–C–N thin films from binary and ternary cathodes — Comparing sources of C. Surface and Coatings Technology, 2012, 213, 145-154.	2.2	15
69	Metal versus rare-gas ion irradiation during $Tila^*(i)x(i)A(i)x(i)N$ film growth by hybrid high power pulsed magnetron/dc magnetron co-sputtering using synchronized pulsed substrate bias. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	98
70	lon mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N2. Journal of Applied Physics, 2012, 112, .	1.1	36
71	Low Temperature CVD of Thin, Amorphous Boronâ€Carbon Films for Neutron Detectors. Chemical Vapor Deposition, 2012, 18, 221-224.	1.4	22
72	Phase transformations in face centered cubic (Al0.32Cr0.68)2O3 thin films. Surface and Coatings Technology, 2012, 206, 3216-3222.	2.2	37

#	Article	IF	CITATIONS
73	Reactive magnetron sputtering of uniform yttria-stabilized zirconia coatings in an industrial setup. Surface and Coatings Technology, 2012, 206, 4126-4131.	2.2	16
74	Role of Tin+ and Aln+ ion irradiation (n=1, 2) during Ti1-xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode. Surface and Coatings Technology, 2012, 206, 4202-4211.	2.2	119
75	Effects of A-elements (A Si, Ge or Sn) on the structure and electrical contact properties of Ti–A–C–Ag nanocomposites. Thin Solid Films, 2012, 520, 5128-5136.	0.8	10
76	On the effect of water and oxygen in chemical vapor deposition of boron nitride. Thin Solid Films, 2012, 520, 5889-5893.	0.8	12
77	Selection of metal ion irradiation for controlling Ti1â^'xAlxN alloy growth via hybrid HIPIMS/magnetron co-sputtering. Vacuum, 2012, 86, 1036-1040.	1.6	66
78	Ti–Si–C–N thin films grown by reactive arc evaporation from Ti ₃ SiC ₂ cathodes. Journal of Materials Research, 2011, 26, 874-881.	1.2	19
79	Structure and morphology of nickel-alumina/silica solar thermal selective absorbers. Journal of Non-Crystalline Solids, 2011, 357, 1370-1375.	1.5	16
80	CFx thin solid films deposited by high power impulse magnetron sputtering: Synthesis and characterization. Surface and Coatings Technology, 2011, 206, 646-653.	2.2	43
81	Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides. Thin Solid Films, 2011, 519, 7779-7784.	0.8	82
82	Step-flow growth of nanolaminate Ti3SiC2 epitaxial layers on 4H-SiC(0 0 0 1). Scripta Materialia, 2011, 64, 1141-1144.	2.6	16
83	Epitaxial growth and electrical-transport properties of Ti7Si2C5 thin films synthesized by reactive sputter-deposition. Scripta Materialia, 2011, 65, 811-814.	2.6	25
84	Two-domain formation during the epitaxial growth of GaN (0001) on $\langle i \rangle c \langle j \rangle$ -plane Al2O3 (0001) by high power impulse magnetron sputtering. Journal of Applied Physics, 2011, 110, .	1.1	18
85	Epitaxial CVD growth of sp ² â€hybridized boron nitride using aluminum nitride as buffer layer. Physica Status Solidi - Rapid Research Letters, 2011, 5, 397-399.	1.2	44
86	Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide. Surface and Coatings Technology, 2011, 205, 4828-4831.	2.2	70
87	Layer formation by resputtering in Ti–Si–C hard coatings during large scale cathodic arc deposition. Surface and Coatings Technology, 2011, 205, 3923-3930.	2.2	83
88	Face-centered cubic (Al1â^'xCrx)2O3. Thin Solid Films, 2011, 519, 2426-2429.	0.8	60
89	Mitigating the geometrical limitations of conventional sputtering by controlling the ion-to-neutral ratio during high power pulsed magnetron sputtering. Thin Solid Films, 2011, 519, 6354-6361.	0.8	48
90	Epitaxial growth and electrical transport properties of Cr <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> GeC thin films. Physical Review B, 2011, 84, .	1.1	56

#	Article	IF	Citations
91	Anomalously high thermoelectric power factor in epitaxial ScN thin films. Applied Physics Letters, 2011, 99, .	1.5	84
92	Pattern-induced magnetic anisotropy in FePt thin films by ion irradiation. Physical Review B, 2011, 83, .	1.1	24
93	Phase-stabilization and substrate effects on nucleation and growth of (Ti,V) <i>n</i> +1GeC <i>n</i> thin films. Journal of Applied Physics, 2011, 110, .	1.1	20
94	Electronic-grade GaN(0001)/Al2O3(0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target. Applied Physics Letters, 2011, 98, .	1.5	52
95	Formation of basal plane fiberâ€textured Ti ₂ AlN films on amorphous substrates. Physica Status Solidi - Rapid Research Letters, 2010, 4, 121-123.	1.2	3
96	Transparent and conducting TiO2:Nb films made by sputter deposition: Application to spectrally selective solar reflectors. Solar Energy Materials and Solar Cells, 2010, 94, 75-79.	3.0	28
97	On the film density using high power impulse magnetron sputtering. Surface and Coatings Technology, 2010, 205, 591-596.	2.2	317
98	Localised modifications of anatase TiO2 thin films by a Focused Ion Beam. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3142-3146.	0.6	1
99	ERD analysis and modification of TiO2 thin films with heavy ions. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 1893-1898.	0.6	49
100	On the exciton model for ion-beam damage: The example of TiO2. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3122-3126.	0.6	16
101	Growth and structural properties of Mg:C thin films prepared by magnetron sputtering. Thin Solid Films, 2010, 518, 4225-4230.	0.8	18
102	Microstructure control of CrNx films during high power impulse magnetron sputtering. Surface and Coatings Technology, 2010, 205, 118-130.	2.2	77
103	Microstructure evolution of Ti–Si–C–Ag nanocomposite coatings deposited by DC magnetron sputtering. Acta Materialia, 2010, 58, 6592-6599.	3.8	30
104	Effects of volume mismatch and electronic structure on the decomposition of ScAlN and TiAlN solid solutions. Physical Review B, 2010, 81, .	1.1	37
105	Magic and hot giant fullerenes formed inside ion irradiated weakly bound C60 clusters. Journal of Chemical Physics, 2010, 133, 104301.	1.2	28
106	Thermal instability of implanted Mn ions in ZnO. Journal of Applied Physics, 2010, 107, 023507.	1.1	7
107	\$hbox{CrN}_{m x}\$ Films Prepared by DC Magnetron Sputtering and High-Power Pulsed Magnetron Sputtering: A Comparative Study. IEEE Transactions on Plasma Science, 2010, 38, 3046-3056.	0.6	72
108	Patterning of rutile TiO ₂ surface by ion beam lithography through full-solid masks. Nanotechnology, 2010, 21, 235301.	1.3	13

#	Article	IF	CITATIONS
109	Localized56Fe+ion implantation of TiO2using anodic porous alumina. Materials Research Society Symposia Proceedings, 2009, 1181, 23.	0.1	1
110	Continuous and Localized Mn Implantation of ZnO. Nanoscale Research Letters, 2009, 4, 878-887.	3.1	17
111	Formation and annealing behavior of prominent point defects in MeV ion implanted n-type epitaxial Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 177-181.	1.7	1
112	Implantation of anatase thin film with 100 keV 56Fe ions: Damage formation and magnetic behaviour. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2725-2730.	0.6	6
113	Influence of the target composition on reactively sputtered titanium oxide films. Vacuum, 2009, 83, 1295-1298.	1.6	24
114	Reduced photoluminescence from InGaN/GaN multiple quantum well structures following 40Mev iodine ion irradiation. Physica B: Condensed Matter, 2009, 404, 4925-4928.	1.3	10
115	Effect of spatial defect distribution on the electrical behavior of prominent vacancy point defects in swift-ion implanted Si. Physical Review B, 2009, 79, .	1.1	17
116	Formation of surface nanostructures on rutile (TiO ₂): comparative study of low-energy cluster ion and high-energy monoatomic ion impact. Journal Physics D: Applied Physics, 2009, 42, 205303.	1.3	20
117	Mapping of hydrogen isotopes with a scanning nuclear microprobe. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2429-2432.	0.6	3
118	Influence of the Chemical Composition on the Phase Constitution and the Elastic Properties of RFâ€Sputtered Hydroxyapatite Coatings. Plasma Processes and Polymers, 2008, 5, 168-174.	1.6	24
119	ERDA of Ni–Al2O3/SiO2 solar thermal selective absorbers. Solar Energy Materials and Solar Cells, 2008, 92, 1177-1182.	3.0	25
120	Heavy ion beam-based nano- and micro-structuring of TiO2 single crystals using self-assembled masks. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3113-3119.	0.6	25
121	Comparing XPS and ToF-ERDA measurement of high-k dielectric materials. Journal of Physics: Conference Series, 2008, 100, 012036.	0.3	2
122	Measurement of hydrogen isotopes by a nuclear microprobe. Journal of Physics: Conference Series, 2008, 100, 062029.	0.3	0
123	Temperature effect on low-k dielectric thin films studied by ERDA. Journal of Physics: Conference Series, 2008, 100, 012041.	0.3	2
124	High dose Fe implantation of GaN: damage build-up and dopant redistribution. Journal of Physics: Conference Series, 2008, 100, 042036.	0.3	3
125	Dopant distribution in high fluence Fe implanted GaN. Journal of Applied Physics, 2008, 104, 053509.	1.1	10
126	Swift Heavy Ion Beam-Based Nanopatterning Using Self-Assembled Masks. Materials Research Society Symposia Proceedings, 2007, 1020, 1.	0.1	0

#	Article	IF	Citations
127	Nanopattern transfer to SiO[sub 2] by ion track lithography and highly selective HF vapor etching. Journal of Vacuum Science & Technology B, 2007, 25, 862.	1.3	9
128	Experimental and ab initio study of the mechanical properties of hydroxyapatite. Applied Physics Letters, 2007, 90, 193902.	1.5	68
129	Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide. Journal of Applied Physics, 2007, 101, 084311.	1.1	15
130	Multiple ionization and fragmentation of fullerene dimers by highly charged ion impact. Journal of Physics: Conference Series, 2007, 88, 012039.	0.3	2
131	Stabilities of multiply charged dimers and clusters of fullerenes. Journal of Chemical Physics, 2007, 126, 224303.	1.2	39
132	Effects on the structural and magnetic properties of amorphous ribbons of (Co0.94Fe0.06)72.5Si12.5B15 caused by 4MeV Cl2+ ion irradiation. Journal of Non-Crystalline Solids, 2007, 353, 879-882.	1.5	3
133	Well-ordered nanopore arrays in rutile TiO2single crystals by swift heavy ion-beam lithography. Nanotechnology, 2007, 18, 305303.	1.3	34
134	Even-odd effects in the ionization cross sections of [C60]2and [C60C70] dimers. Physical Review A, 2007, 75, .	1.0	36
135	Carbon nanopillar array deposition on by ion irradiation through a porous alumina template. Vacuum, 2007, 82, 359-362.	1.6	7
136	Activation energy of the growth of ion-beam-synthesized nano-crystalline 3C–SiC. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 195-198.	0.6	4
137	Surface patterning by heavy ion lithography using self-assembled colloidal masks. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 777-781.	0.6	13
138	Stopping power measurements of He ions in Si and SiC by time-of-flight spectrometry. Nuclear Instruments & Methods in Physics Research B, 2007, 261, 1180-1183.	0.6	9
139	FePt thin film irradiated with high energy ions. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1724-1730.	0.8	9
140	Crystalline quality of 3C-SiC formed by high-fluence C+-implanted Si. Applied Surface Science, 2007, 253, 4836-4842.	3.1	12
141	Visualization of MeV ion impacts in Si using scanning capacitance microscopy. Physical Review B, 2006, 73, .	1.1	13
142	Fabrication of Well-Ordered High-Aspect-Ratio Nanopore Arrays in TiO2 Single Crystals. Nano Letters, 2006, 6, 1065-1068.	4.5	40
143	Lifetimes of C602â^ and C702â^ dianions in a storage ring. Journal of Chemical Physics, 2006, 124, 024310.	1.2	47
144	Fullerene collisions and clusters of fullerenes. International Journal of Mass Spectrometry, 2006, 252, 117-125.	0.7	5

#	Article	IF	Citations
145	Scanning probe microscopy of single Au ion implants in Si. Materials Science and Engineering C, 2006, 26, 782-787.	3.8	0
146	lon track formation below 1MeV/u in thin films of amorphous SiO2. Nuclear Instruments & Methods in Physics Research B, 2006, 243, 119-126.	0.6	41
147	Electronic stopping forces of heavy ions in metal oxides. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 18-21.	0.6	11
148	Ion tracks in amorphous SiO2 irradiated with low and high energy heavy ions. Nuclear Instruments & Methods in Physics Research B, 2006, 245, 269-273.	0.6	24
149	Electronic stopping powers for heavy ions in niobium and tantalum pentoxides. Nuclear Instruments & Methods in Physics Research B, 2006, 250, 62-65.	0.6	11
150	Fragmentation and ionization of C70 and C60 by slow ions of intermediate charge. European Physical Journal D, 2006, 38, 299-306.	0.6	4
151	CLUSTERS AND CLUSTERS OF CLUSTERS IN COLLISIONS. , 2006, , .		1
152	B-9 GIXRD CHARACTERIZATION OF ION BEAM SYNTHESIZED 3C-SiC(Session: Thin films). The Proceedings of the Asian Symposium on Materials and Processing, 2006, 2006, 32.	0.0	0
153	LIFETIMES OF $m \ C^{2-}_{60}$ AND $m \ C^{2-}_{70}$ DIANIONS IN A STORAGE RING. , 2006, , .		0
154	Characterization of swift heavy ion tracks in CaF2 by scanning force and transmission electron microscopy. Nuclear Instruments & Methods in Physics Research B, 2005, 240, 819-828.	0.6	88
155	Transfer ionization in p+He collisions. Nuclear Instruments & Methods in Physics Research B, 2005, 233, 43-47.	0.6	6
156	Fragmentation of charged fullerene dimers: Kinetic energy release. Nuclear Instruments & Methods in Physics Research B, 2005, 235, 419-424.	0.6	5
157	Ion beams of carbon clusters and multiply charged fullerenes produced with electron cyclotron resonance ion sources. Review of Scientific Instruments, 2005, 76, 053304.	0.6	5
158	Two-center interference in fast proton–H2-electron transfer and excitation processes. Physical Review A, 2005, 72, .	1.0	31
159	Experimental determination of electronic stopping for ions in silicon dioxide. Applied Physics Letters, 2005, 87, 104103.	1.5	13
160	Recoil-ion momentum distributions for transfer ionization in fast proton-He collisions. Physical Review A, 2005, 72, .	1.0	25
161	COLLISION INDUCED FRAGMENTATION OF FULLERENE CLUSTERS (C60)n. International Journal of Modern Physics B, 2005, 19, 2345-2352.	1.0	2
162	Electrostatic model calculations of fission barriers for fullerene ions. European Physical Journal D, 2004, 29, 63-68.	0.6	13

#	Article	IF	CITATIONS
163	Photodissociation of protonated amino acids and peptides in an ion storage ring. Determination of Arrhenius parameters in the high-temperature limit. Physical Chemistry Chemical Physics, 2004, 6, 2676-2681.	1.3	53
164	Ionization of C70 and C60 molecules by slow highly charged ions: A comparison. Physical Review A, 2004, 69, .	1.0	27
165	STABILITY AND FRAGMENTATION OF HIGHLY CHARGED FULLERENE CLUSTERS., 2004,, 301-311.		0
166	Electron capture and loss by protonated peptides and proteins in collisions with \$ mathsf $\{C_{60}\}$ \$ and Na. European Physical Journal D, 2003, 22, 75-79.	0.6	16
167	Power-law decay of collisionally excited amino acids and quenching by radiative cooling. European Physical Journal D, 2003, 25, 139-148.	0.6	52
168	Energy loss and charge state dependency of swift Nq+ ions scattered off a Pt()($1\tilde{A}$ –2) surface. Nuclear Instruments & Methods in Physics Research B, 2003, 209, 259-264.	0.6	0
169	Energy releases in the fission of multiply charged C 60 ions. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 643-650.	0.6	6
170	Azimuthal effects in grazing surface scattering. Journal of Electron Spectroscopy and Related Phenomena, 2003, 129, 309-313.	0.8	1
171	Highly Charged Clusters of Fullerenes: Charge Mobility and Appearance Sizes. Physical Review Letters, 2003, 91, 215504.	2.9	60
172	Barriers for asymmetric fission of multiply chargedC60fullerenes. Physical Review A, 2003, 67, .	1.0	35
173	Transfer Ionization in MeV p-He Collisions Studied by Pulsed Recoil-Ion-Momentum Spectroscopy in a Storage Ring/Gas Target Experiment. AIP Conference Proceedings, 2003, , .	0.3	1
174	Double-to-Single Target Ionization Ratio for Electron Capture in Fastp-He Collisions. Physical Review Letters, 2002, 89, 163201.	2.9	36
175	Static over-the-barrier model for electron transfer between metallic spherical objects. Physical Review A, 2002, 66, .	1.0	55
176	Surface channeling of 1 and 10 keV nitrogen ions on a $Pt(110)(1\tilde{A}-2)$ surface. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 568-575.	0.6	18
177	Conetrap: A compact electrostatic ion trap. Nuclear Instruments & Methods in Physics Research B, 2001, 173, 523-527.	0.6	88
178	Channeling effects observed in energy-loss spectra of nitrogen ions scattered off a $Pt(110)$ surface. Physical Review A, 2001, 64, .	1.0	35
179	Stabilization of electrons on Arq+ions after slow collisions with C60. Physical Review A, 2001, 63, .	1.0	18
180	Energy loss of fast N+ ions scattered off a Pt(1 1 0) surface. Nuclear Instruments & Methods in Physics Research B, 2000, 164-165, 566-574.	0.6	12

#	Article	lF	CITATIONS
181	Electronic stopping of swift partially stripped molecules and clusters. Physical Review A, 2000, 61, .	1.0	30
182	Tracks in YIG induced by MeV C60 ions. Nuclear Instruments & Methods in Physics Research B, 1998, 135, 295-301.	0.6	21
183	Tracks induced in CaF2 by MeV cluster irradiation. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 753-762.	0.6	54
184	A comparison between tracks created by high energy mono-atomic and cluster ions in Y3Fe5O12. Nuclear Instruments & Methods in Physics Research B, 1998, 146, 412-419.	0.6	45
185	Microscopic observations of metallic inclusions generated along the path of MeV clusters in CaF2. Nuclear Instruments & Methods in Physics Research B, 1998, 146, 399-404.	0.6	32
186	Track separation due to dissociation of MeV C60 inside a solid. Nuclear Instruments & Methods in Physics Research B, 1997, 132, 93-108.	0.6	63
187	Calculations of electronic energy loss of fast molecules in amorphous carbon. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 39-42.	0.6	2
188	Molecule and cluster bombardment: energy loss, trajectories, and collision cascades. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 1-11.	0.6	60
189	Molecule and cluster bombardment: energy loss, trajectories, and collision cascades. , 1996, , 1-11.		1
190	Orientational dependence of electronic stopping of molecule and cluster ions. Nuclear Instruments & Methods in Physics Research B, 1994, 88, 191-195.	0.6	9
191	Doppler Effect Derived from Time-Dependent Perturbation Theory. Journal of Molecular Spectroscopy, 1993, 158, 484-486.	0.4	0