
Osnat Gillor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7587673/publications.pdf Version: 2024-02-01

OSNAT CILLOP

#	Article	IF	CITATIONS
1	The dual role of bacteriocins as anti- and probiotics. Applied Microbiology and Biotechnology, 2008, 81, 591-606.	1.7	326
2	Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME Journal, 2010, 4, 553-563.	4.4	243
3	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	11.5	195
4	Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient. Microbial Ecology, 2010, 60, 453-461.	1.4	173
5	Competitive interactions in <i>Escherichia coli</i> populations: the role of bacteriocins. ISME Journal, 2011, 5, 71-81.	4.4	140
6	Colicins and Microcins: The Next Generation Antimicrobials. Advances in Applied Microbiology, 2004, 54, 129-146.	1.3	133
7	Genetically Engineered Bacteriocins and their Potential as the Next Generation of Antimicrobials. Current Pharmaceutical Design, 2005, 11, 1067-1075.	0.9	116
8	Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiology, 2010, 10, 283.	1.3	88
9	Spatial and Temporal Biogeography of Soil Microbial Communities in Arid and Semiarid Regions. PLoS ONE, 2013, 8, e69705.	1.1	88
10	Microbial community response to hydration-desiccation cycles in desert soil. Scientific Reports, 2017, 7, 45735.	1.6	80
11	Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiology, 2009, 9, 165.	1.3	73
12	The role of SOS boxes in enteric bacteriocin regulation. Microbiology (United Kingdom), 2008, 154, 1783-1792.	0.7	72
13	Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems. MSystems, 2020, 5, .	1.7	66
14	The Effect of Resource Islands on Abundance and Diversity of Bacteria in Arid Soils. Microbial Ecology, 2012, 63, 694-700.	1.4	57
15	Active and total prokaryotic communities in dryland soils. FEMS Microbiology Ecology, 2013, 86, 130-138.	1.3	56
16	PHOSPHORUS BIOAVAILABILITY MONITORING BY A BIOLUMINESCENT CYANOBACTERIAL SENSOR STRAIN1. Journal of Phycology, 2002, 38, 107-115.	1.0	54
17	Effect of phosphorus amendments on present day plankton communities in pelagic Lake Erie. Aquatic Microbial Ecology, 2003, 32, 275-285.	0.9	54
18	Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: Microbial community composition. Water Research, 2014, 50, 341-349.	5.3	53

OSNAT GILLOR

#	Article	IF	CITATIONS
19	Comparable levels of microbial contamination in soil and on tomato crops after drip irrigation with treated wastewater or potable water. Agriculture, Ecosystems and Environment, 2016, 215, 140-150.	2.5	52
20	Monitoring of phosphorus bioavailability in water by an immobilized luminescent cyanobacterial reporter strain. Biosensors and Bioelectronics, 2001, 16, 811-818.	5.3	51
21	Assessment of pathogenic bacteria in treated graywater and irrigated soils. Science of the Total Environment, 2013, 458-460, 298-302.	3.9	50
22	Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME Journal, 2021, 15, 3339-3356.	4.4	48
23	The role of bacteriocins as selfish genetic elements. Biology Letters, 2013, 9, 20121173.	1.0	45
24	Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems. Science of the Total Environment, 2016, 562, 344-352.	3.9	44
25	Potential microbial hazards from graywater reuse and associated matrices: A review. Water Research, 2016, 106, 183-195.	5.3	41
26	Impact of Higher Alginate Expression on Deposition of <i>Pseudomonas aeruginosa</i> in Radial Stagnation Point Flow and Reverse Osmosis Systems. Environmental Science & Technology, 2009, 43, 7376-7383.	4.6	40
27	Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: Microbial community composition. Water Research, 2014, 67, 86-95.	5.3	39
28	Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances. Biofouling, 2017, 33, 397-409.	0.8	38
29	The Weak Shall Inherit: Bacteriocin-Mediated Interactions in Bacterial Populations. PLoS ONE, 2013, 8, e63837.	1.1	34
30	Soil Bacterial Communities Exhibit Strong Biogeographic Patterns at Fine Taxonomic Resolution. MSystems, 2020, 5, .	1.7	33
31	A Synechococcus P glnA :: luxAB Fusion for Estimation of Nitrogen Bioavailability to Freshwater Cyanobacteria. Applied and Environmental Microbiology, 2003, 69, 1465-1474.	1.4	32
32	Reduced Bacterial Deposition and Attachment by Quorum-Sensing Inhibitor 4-Nitro-pyridine- <i>N</i> -oxide: The Role of Physicochemical Effects. Langmuir, 2010, 26, 12089-12094.	1.6	31
33	The question of pathogen quantification in disinfected graywater. Science of the Total Environment, 2015, 506-507, 496-504.	3.9	31
34	The role of stress in colicin regulation. Archives of Microbiology, 2014, 196, 753-764.	1.0	30
35	Recent Advances in Bacteriocin Application as Antimicrobials. Recent Patents on Anti-infective Drug Discovery, 2007, 2, 115-122.	0.5	30
36	Distribution of Mixotrophy and Desiccation Survival Mechanisms across Microbial Genomes in an Arid Biological Soil Crust Community. MSystems, 2021, 6, .	1.7	29

OSNAT GILLOR

#	Article	IF	CITATIONS
37	Occurrence and distribution of antibiotics and corresponding antibiotic resistance genes in different soil types irrigated with treated wastewater. Science of the Total Environment, 2021, 782, 146835.	3.9	29
38	Evaluating amplified rDNA restriction analysis assay for identification of bacterial communities. Antonie Van Leeuwenhoek, 2009, 96, 659-664.	0.7	28
39	Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective. Scientific Reports, 2017, 7, 42068.	1.6	26
40	The Impact of Hydration and Temperature on Bacterial Diversity in Arid Soil Mesocosms. Frontiers in Microbiology, 2017, 8, 1078.	1.5	25
41	Soil texture and properties rather than irrigation water type shape the diversity and composition of soil microbial communities. Applied Soil Ecology, 2021, 161, 103834.	2.1	25
42	Phosphorus and nitrogen in a monomictic freshwater lake: employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability. Freshwater Biology, 2010, 55, 1182-1190.	1.2	23
43	The origin and role of biological rock crusts in rocky desert weathering. Biogeosciences, 2019, 16, 1133-1145.	1.3	23
44	Seasonal and spatial variability in total and active bacterial communities from desert soil. Pedobiologia, 2019, 74, 7-14.	0.5	22
45	Importance of soil texture to the fate of pathogens introduced by irrigation with treated wastewater. Science of the Total Environment, 2019, 653, 886-896.	3.9	21
46	The combined effects of treated wastewater irrigation and plastic mulch cover on soil and crop microbial communities. Biology and Fertility of Soils, 2020, 56, 729-742.	2.3	19
47	Auto-regulation of DNA degrading bacteriocins: molecular and ecological aspects. Antonie Van Leeuwenhoek, 2014, 105, 823-834.	0.7	18
48	Potential Health and Environmental Risks Associated with Onsite Greywater Reuse: A Review. Built Environment, 2016, 42, 212-229.	0.4	16
49	Rapid MPN-Qpcr Screening for Pathogens in Air, Soil, Water, and Agricultural Produce. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	12
50	Genome-wide transcription profiling of aerobic and anaerobic <i>Escherichia coli</i> biofilm and planktonic cultures. FEMS Microbiology Letters, 2017, 364, fnx006.	0.7	12
51	Soil properties and habitats determine the response of bacterial communities to agricultural wastewater irrigation. Pedosphere, 2020, 30, 146-158.	2.1	12
52	Bacteriocin expression in sessile and planktonic populations of Escherichia coli. Journal of Antibiotics, 2015, 68, 52-55.	1.0	11
53	The fate of pathogens in treated wastewater-soil-crops continuum and the effect of physical barriers. Science of the Total Environment, 2019, 681, 339-349.	3.9	11
54	Simultaneous detection of Giardia lamblia and Cryptosporidium parvum (oo)cysts in soil using immunomagnetic separation and direct fluorescent antibody staining. Journal of Microbiological Methods, 2013, 94, 375-377.	0.7	10

OSNAT GILLOR

#	Article	IF	CITATIONS
55	The effects of microalgae-based fertilization of wheat on yield, soil microbiome and nitrogen oxides emissions. Science of the Total Environment, 2022, 806, 151320.	3.9	10
56	Antibiotic resistance in soil and tomato crop irrigated with freshwater and two types of treated wastewater. Environmental Research, 2022, 211, 113021.	3.7	10
57	Understanding changes in biocrust communities following phosphate mining in the Negev Desert. Environmental Research, 2022, 207, 112200.	3.7	9
58	The tombstones at the Monumental Cemetery of Milano select for a specialized microbial community. International Biodeterioration and Biodegradation, 2021, 164, 105298.	1.9	7
59	The dissemination of antibiotics and their corresponding resistance genes in treated effluent-soil-crops continuum, and the effect of barriers. Science of the Total Environment, 2022, 807, 151525.	3.9	7
60	Microbial diversity and community composition in recirculating vertical flow constructed wetlands. Water Science and Technology, 2011, 64, 2306-2315.	1.2	6
61	Effect of Treated Domestic Wastewater on Soil Physicochemical and Microbiological Properties. Journal of Environmental Quality, 2013, 42, 1226-1235.	1.0	6
62	The Effects of Colicin Production Rates on Allelopathic Interactions in Escherichia coli Populations. Microorganisms, 2019, 7, 564.	1.6	6
63	Bacteriocins' Role in Bacterial Communication. , 2007, , 135-145.		6
64	Perennials but not slope aspect affect the diversity of soil bacterial communities in the northern Negev Desert, Israel. Soil Research, 2018, 56, 123.	0.6	5
65	Divergence of Biocrust Active Bacterial Communities in the Negev Desert During a Hydration-Desiccation Cycle. Microbial Ecology, 2023, 86, 474-484.	1.4	5
66	Endophytic Bacteria Colonizing the Petiole of the Desert Plant Zygophyllum dumosum Boiss: Possible Role in Mitigating Stress. Plants, 2022, 11, 484.	1.6	3
67	The role of ecosystem engineers in shaping the diversity and function of arid soil bacterial communities. Soil, 2021, 7, 611-637.	2.2	2
68	The effect of reverse transcription enzymes and conditions on high throughput amplicon sequencing of the 16S rRNA. PeerJ, 2019, 7, e7608.	0.9	2
69	Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities. Biogeosciences, 2021, 18, 3331-3342.	1.3	1