Sandra Orgeig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7587671/publications.pdf Version: 2024-02-01

SANDRA ORCEIC

#	Article	IF	CITATIONS
1	Molecular regulation of lung maturation in near-term fetal sheep by maternal daily vitamin C treatment in late gestation. Pediatric Research, 2022, 91, 828-838.	1.1	5
2	PPARÎ ³ activation in late gestation does not promote surfactant maturation in the fetal sheep lung. Journal of Developmental Origins of Health and Disease, 2021, 12, 963-974.	0.7	3
3	Call for Papers: "Morphology is the link between genetics and function― a tribute to Ewald R. Weibel. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L254-L256.	1.3	1
4	The Recorded Interaction Task: A Validation Study of a New Observational Tool to Assess Motherâ€Infant Bonding. Journal of Midwifery and Women's Health, 2021, 66, 249-255.	0.7	1
5	Increased Alveolar Heparan Sulphate and Reduced Pulmonary Surfactant Amount and Function in the Mucopolysaccharidosis IIIA Mouse. Cells, 2021, 10, 849.	1.8	5
6	Impact of maternal late gestation undernutrition on surfactant maturation, pulmonary blood flow and oxygen delivery measured by magnetic resonance imaging in the sheep fetus. Journal of Physiology, 2021, 599, 4705-4724.	1.3	4
7	The role of surfactant and distal lung dysfunction in the pathology of lysosomal storage diseases. Current Opinion in Physiology, 2021, 23, 100467.	0.9	0
8	Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology, 2020, 150, 84-95.	0.9	42
9	Interstitial lung disease and surfactant dysfunction as a secondary manifestation of disease: insights from lysosomal storage disorders. Drug Discovery Today: Disease Models, 2019, 29-30, 35-42.	1.2	4
10	Maternal chronic hypoxia increases expression of genes regulating lung liquid movement and surfactant maturation in male fetuses in late gestation. Journal of Physiology, 2017, 595, 4329-4350.	1.3	17
11	Differential effects of late gestation maternal overnutrition on the regulation of surfactant maturation in fetal and postnatal life. Journal of Physiology, 2017, 595, 6635-6652.	1.3	16
12	Maternal obesity mediated predisposition to respiratory complications at birth and in later life: understanding the implications of the obesogenic intrauterine environment. Paediatric Respiratory Reviews, 2017, 21, 11-18.	1.2	31
13	Chronic hypoxaemia as a molecular regulator of fetal lung development: implications for risk of respiratory complications at birth. Paediatric Respiratory Reviews, 2017, 21, 3-10.	1.2	15
14	Normalisation of surfactant protein -A and -B expression in the lungs of low birth weight lambs by 21 days old. PLoS ONE, 2017, 12, e0181185.	1.1	8
15	Changes in lipid metabolism in mucopolysaccharidosis (MPS) IIIA mouse lung tissue and pulmonary surfactant. , 2017, , .		1
16	Physicochemical Investigation on the Pulmonary Surfactant of Some Vertebrates. Journal of Surface Science and Technology, 2017, 33, 127.	0.3	0
17	Risk of Respiratory Distress Syndrome and Efficacy of Glucocorticoids: Are They the Same in the Normally Grown and Growth-Restricted Infant?. Reproductive Sciences, 2016, 23, 1459-1472.	1.1	14
18	Regulation of lung maturation by prolyl hydroxylase domain inhibition in the lung of the normally grown and placentally restricted fetus in late gestation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology. 2016. 310. R1226-R1243.	0.9	17

#	Article	IF	CITATIONS
19	Structural and molecular regulation of lung maturation by intratracheal vascular endothelial growth factor administration in the normally grown and placentally restricted fetus. Journal of Physiology, 2016, 594, 1399-1420.	1.3	26
20	Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. , 2015, 6, 363-422.		26
21	Increased lung prolyl hydroxylase and decreased glucocorticoid receptor are related to decreased surfactant protein in the growth-restricted sheep fetus. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L84-L97.	1.3	25
22	Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung. Journal of Histochemistry and Cytochemistry, 2015, 63, 866-878.	1.3	17
23	The Development of the Pulmonary Surfactant System. , 2014, , 183-209.		4
24	Intrafetal glucose infusion alters glucocorticoid signaling and reduces surfactant protein mRNA expression in the lung of the late-gestation sheep fetus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R538-R545.	0.9	37
25	Effect of Environment and Aging on the Pulmonary Surfactant System. , 2014, , 447-469.		1
26	Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1707-1714.	1.4	24
27	Regulation of fetal lung development in response to maternal overnutrition. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 803-816.	0.9	39
28	The fetal sheep lung does not respond to cortisol infusion during the late canalicular phase of development. Physiological Reports, 2013, 1, e00130.	0.7	32
29	Long-Term Pulmonary Effects of Intrauterine Exposure to Endotoxin Following Preterm Birth in Sheep. Reproductive Sciences, 2012, 19, 1352-1364.	1.1	10
30	Antenatal Steroids and the IUGR Fetus: Are Exposure and Physiological Effects on the Lung and Cardiovascular System the Same as in Normally Grown Fetuses?. Journal of Pregnancy, 2012, 2012, 1-15.	1.1	58
31	Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1581-1589.	1.4	53
32	Differential mRNA and tissue expression of lymphangiogenic growth factors (VEGF-C and -D) and their receptor (VEGFR-3) during tail regeneration in a gecko. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2012, 182, 109-126.	0.7	2
33	Pulmonary Surfactant Membranes of Hibernating Ground Squirrels Possess Increased Fluidity but are Capable of Maintaining an Ordered Membrane Structure at Low Temperatures. Biophysical Journal, 2011, 100, 628a.	0.2	0
34	Prenatal development of the pulmonary surfactant system and the influence of hypoxia. Respiratory Physiology and Neurobiology, 2011, 178, 129-145.	0.7	21
35	Leptin integrates vertebrate evolution: From oxygen to the blood–gas barrier. Respiratory Physiology and Neurobiology, 2010, 173, S37-S42.	0.7	18
36	Recent advances in alveolar biology: Some new looks at the alveolar interface. Respiratory Physiology and Neurobiology, 2010, 173, S55-S64.	0.7	48

#	Article	IF	CITATIONS
37	Recent advances in alveolar biology: Evolution and function of alveolar proteins. Respiratory Physiology and Neurobiology, 2010, 173, S43-S54.	0.7	86
38	Thermodynamic and structural studies of mixed monolayers: Mutual mixing of DPPC and DPPG with DoTAP at the air–water interface. Materials Science and Engineering C, 2010, 30, 542-548.	3.8	16
39	Recent Advances into Understanding Some Aspects of the Structure and Function of Mammalian and Avian Lungs. Physiological and Biochemical Zoology, 2010, 83, 792-807.	0.6	30
40	Intrauterine growth restriction delays surfactant protein maturation in the sheep fetus. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L575-L583.	1.3	81
41	Coping With the Cold: Effect of Hibernation on Pulmonary Surfactant inÂthe Thirteen-Lined Ground Squirrel. Biophysical Journal, 2010, 98, 76a.	0.2	1
42	Does the intrauterine growth-restricted fetus benefit from antenatal glucocorticoids?. Expert Review of Obstetrics and Gynecology, 2010, 5, 149-152.	0.4	3
43	Antenatal Glucocorticoid Treatment of The Growth-restricted Fetus: Benefit or Cost?. Reproductive Sciences, 2009, 16, 527-538.	1.1	16
44	Reduced Surface Tension Normalizes Static Lung Mechanics in a Rodent Chronic Heart Failure Model. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 181-187.	2.5	29
45	Environmental Selection Pressures Shaping the Pulmonary Surfactant System of Adult and Developing Lungs. , 2009, , 205-239.		6
46	The anatomy, physics, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures?. Integrative and Comparative Biology, 2007, 47, 610-627.	0.9	39
47	Purifying selection drives the evolution of surfactant protein C (SP-C) independently of body temperature regulation in mammals. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2007, 2, 165-176.	0.4	4
48	How regenerating lymphatics function: Lessons from lizard tails. Anatomical Record, 2007, 290, 108-114.	0.8	9
49	Developmental changes in rat surfactant lipidomics in the context of species variability. Pediatric Pulmonology, 2007, 42, 794-804.	1.0	27
50	Positive Selection in the N-Terminal Extramembrane Domain of Lung Surfactant Protein C (SP-C) in Marine Mammals. Journal of Molecular Evolution, 2007, 65, 12-22.	0.8	18
51	The surface activity of pulmonary surfactant from diving mammals. Respiratory Physiology and Neurobiology, 2006, 150, 220-232.	0.7	22
52	The composition of pulmonary surfactant from diving mammals. Respiratory Physiology and Neurobiology, 2006, 152, 152-168.	0.7	25
53	The evolution of a physiological system: The pulmonary surfactant system in diving mammals. Respiratory Physiology and Neurobiology, 2006, 154, 118-138.	0.7	40
54	The development of the pulmonary surfactant system in California sea lions. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2005, 141, 191-199.	0.8	18

#	Article	IF	CITATIONS
55	Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1426-R1439.	0.9	95
56	New Insights into the Thermal Dynamics of the Surfactant System from Warm and Cold Animals. Lung Biology in Health and Disease, 2005, , 17-57.	0.1	3
57	Hypoxic control of the development of the surfactant system in the chicken: evidence for physiological heterokairy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R403-R410.	0.9	32
58	Control of pulmonary surfactant secretion in adult California sea lions. Biochemical and Biophysical Research Communications, 2004, 313, 727-732.	1.0	27
59	The Origin and Evolution of the Surfactant System in Fish: Insights into the Evolution of Lungs and Swim Bladders. Physiological and Biochemical Zoology, 2004, 77, 732-749.	0.6	72
60	Development of the Pulmonary Surfactant System. , 2004, , 149-167.		9
61	Effects of Aging, Disease and the Environment on the Pulmonary Surfactant System. , 2004, , 363-375.		6
62	The effect of temperature on adrenergic receptors of alveolar type II cells of a heterothermic marsupial. Biochemical and Biophysical Research Communications, 2003, 310, 703-709.	1.0	3
63	Alterations in surface activity of pulmonary surfactant in Could's wattled bat during rapid arousal from torpor. Biochemical and Biophysical Research Communications, 2003, 308, 463-468.	1.0	13
64	Regenerating lizard tails: A new model for investigating lymphangiogenesis. FASEB Journal, 2003, 17, 1-13.	0.2	27
65	Pulmonary Surfactant: The Key to the Evolution of Air Breathing. Physiology, 2003, 18, 151-157.	1.6	76
66	The Role of Extrinsic and Intrinsic Factors in the Evolution of the Control of Pulmonary Surfactant Maturation during Development in the Amniotes. Physiological and Biochemical Zoology, 2003, 76, 281-295.	0.6	9
67	The pattern of surfactant cholesterol during vertebrate evolution and development: does ontogeny recapitulate phylogeny?. Reproduction, Fertility and Development, 2003, 15, 55.	0.1	35
68	Thermal acclimation of surfactant secretion and its regulation by adrenergic and cholinergic agonists in type II cells isolated from warm-active and torpid golden-mantled ground squirrels,Spermophilus lateralis. Journal of Experimental Biology, 2003, 206, 3031-3041.	0.8	11
69	Ontogeny of the Pulmonary Surfactant and Antioxidant Enzyme Systems in the Viviparous Lizard,Tiliqua rugosa. Physiological and Biochemical Zoology, 2002, 75, 260-272.	0.6	7
70	Glucocorticoids, thyroid hormones, and iodothyronine deiodinases in embryonic saltwater crocodiles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1155-R1163.	0.9	36
71	Torpor-associated fluctuations in surfactant activity in Gould's wattled bat. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1580, 57-66.	1.2	26
72	Control of the development of the pulmonary surfactant system in the saltwater crocodile, <i>Crocodylus porosus</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1164-R1176.	0.9	13

#	Article	IF	CITATIONS
73	Regulation of pulmonary surfactant secretion in the developing lizard, Pogona vitticeps. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 133, 539-546.	0.8	11
74	The pulmonary surfactant system matures upon pipping in the freshwater turtle Chelydra serpentina. Journal of Experimental Biology, 2002, 205, 415-425.	0.8	11
75	The pulmonary surfactant system matures upon pipping in the freshwater turtle Chelydra serpentina. Journal of Experimental Biology, 2002, 205, 415-25.	0.8	8
76	Dexamethasone and epinephrine stimulate surfactant secretion in type II cells of embryonic chickens. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R770-R777.	0.9	25
77	Neurochemical and thermal control of surfactant secretion by alveolar type II cells isolated from the marsupial, Sminthopsis crassicaudata. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2001, 171, 223-230.	0.7	14
78	The comparative biology of pulmonary surfactant: past, present and future. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2001, 129, 9-36.	0.8	60
79	The roles of cholesterol in pulmonary surfactant: insights from comparative and evolutionary studies. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 129, 75-89.	0.8	96
80	The Ontogeny of Pulmonary Surfactant Secretion in the Embryonic Green Sea Turtle (Chelonia mydas). Physiological and Biochemical Zoology, 2001, 74, 493-501.	0.6	18
81	Antioxidant enzymes in the developing lungs of egg-laying and metamorphosing vertebrates. Journal of Experimental Biology, 2001, 204, 3973-3981.	0.8	32
82	Postnatal development and control of the pulmonary surfactant system in the tammar wallaby <i>Macropus eugenii</i> . Journal of Experimental Biology, 2001, 204, 4031-4042.	0.8	23
83	Periodic Fluctuations in the Pulmonary Surfactant System in Gould's Wattled Bat (Chalinolobus) Tj ETQq1 1	0.784314 0.6	rgBT /Overic
84	Development of the pulmonary surfactant system in two oviparous vertebrates. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R486-R493.	0.9	24
85	Control of pulmonary surfactant secretion: an evolutionary perspective. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R611-R619.	0.9	16
86	Thermal Cycling of the Pulmonary Surfactant System in Small Heterothermic Mammals. , 2000, , 187-197.		3
87	Alterations in pulmonary surfactant after rapid arousal from torpor in the marsupial Sminthopsis crassicaudata. Journal of Applied Physiology, 1999, 86, 1959-1970.	1.2	30
88	Control of pulmonary surfactant secretion from type II pneumocytes isolated from the lizard <i>Pogona vitticeps</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1705-R1711.	0.9	7
89	Surfactant in the Gas Mantle of the SnailHelix aspersa. Physiological and Biochemical Zoology, 1999, 72, 691-698.	0.6	14
90	EVOLUTION OF SURFACE ACTIVITY RELATED FUNCTIONS OF VERTEBRATE PULMONARY SURFACTANT. Clinical and Experimental Pharmacology and Physiology, 1998, 25, 716-721.	0.9	56

#	Article	IF	CITATIONS
91	Conservation of Surfactant Protein A: Evidence for a Single Origin for Vertebrate Pulmonary Surfactant. Journal of Molecular Evolution, 1998, 46, 131-138.	0.8	83
92	The role of lipids in pulmonary surfactant. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1408, 90-108.	1.8	610
93	The Changing State of Surfactant Lipids: New Insights from Ancient Animals. American Zoologist, 1998, 38, 305-320.	0.7	43
94	Alterations in the surface properties of lung surfactant in the torpid marsupial Sminthopsis crassicaudata. Journal of Applied Physiology, 1998, 84, 146-156.	1.2	28
95	Autonomic Control of the Pulmonary Surfactant System and Lung Compliance in the Lizard. Physiological Zoology, 1997, 70, 444-455.	1.5	25
96	Surfactant regulates pulmonary fluid balance in reptiles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R2013-R2021.	0.9	4
97	Alterations in composition and function of surfactant associated with torpor in Sminthopsis crassicaudata. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1996, 271, R437-R445.	0.9	16
98	The Influence of Temperature, Phylogeny, and Lung Structure on the Lipid Composition of Reptilian Pulmonary Surfactant. Experimental Lung Research, 1996, 22, 267-281.	0.5	28
99	Functional significance and control of release of pulmonary surfactant in the lizard lung. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1995, 269, R838-R847.	0.9	10
100	The Evolution of the Vertebrate Pulmonary Surfactant System. Physiological Zoology, 1995, 68, 539-566.	1.5	52
101	Effect of Hyperpnea on the Cholesterol to Disaturated Phospholipid Ratio in Alveolar Surfactant of Rats. Experimental Lung Research, 1995, 21, 157-174.	0.5	40
102	The evolutionary significance of pulmonary surfactant in lungfish (Dipnoi) American Journal of Respiratory Cell and Molecular Biology, 1995, 13, 161-166.	1.4	37
103	The composition and function of reptilian pulmonary surfactant. Respiration Physiology, 1995, 102, 121-135.	2.8	34
104	Pulmonary Surfactant Lipids in the Faveolar and Saccular Lung Regions of Snakes. Physiological Zoology, 1995, 68, 812-830.	1.5	19
105	Surfactant composition and function in lungs of air-breathing fishes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1994, 266, R1309-R1313.	0.9	7
106	Composition of human pulmonary surfactant varies with exercise and level of fitness American Journal of Respiratory and Critical Care Medicine, 1994, 149, 1619-1627.	2.5	71
107	The composition and function of the pulmonary surfactant system during metamorphosis in the tiger salamander Ambystoma tigrinum. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1994, 164, 337-342.	0.7	21
108	Pulmonary-type surfactants in the lungs of terrestrial and aquatic amphibians. Respiration Physiology, 1994, 95, 249-258.	2.8	34

#	Article	IF	CITATIONS
109	Extended C-terminal tail of wheat histone H2A interacts with DNA of the "linker―region. Journal of Molecular Biology, 1991, 218, 805-813.	2.0	50