Christopher J Garland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7587358/publications.pdf

Version: 2024-02-01

279701 315616 50 2,732 23 38 citations g-index h-index papers 50 50 50 1594 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phospholemman Phosphorylation Regulates Vascular Tone, Blood Pressure, and Hypertension in Mice and Humans. Circulation, 2021, 143, 1123-1138.	1.6	12
2	Endothelium-Dependent Hyperpolarization: The Evolution of Myoendothelial Microdomains. Journal of Cardiovascular Pharmacology, 2021, 78, S3-S12.	0.8	13
3	Endothelial Nitric Oxide Suppresses Action-Potential-Like Transient Spikes and Vasospasm in Small Resistance Arteries. Hypertension, 2020, 76, 785-794.	1.3	12
4	Intrinsic regulation of microvascular tone by myoendothelial feedback circuits. Current Topics in Membranes, 2020, 85, 327-355.	0.5	11
5	Nerveâ€Mediated Responses in Isolated Myogenic and Nonâ€Myogenic Arteries. FASEB Journal, 2019, 33, 683.5.	0.2	O
6	Hyperglycaemia disrupts conducted vasodilation in the resistance vasculature of db/db mice. Vascular Pharmacology, 2018, 103-105, 29-35.	1.0	15
7	Smooth muscle gap-junctions allow propagation of intercellular Ca2+ waves and vasoconstriction due to Ca2+ based action potentials in rat mesenteric resistance arteries. Cell Calcium, 2018, 75, 21-29.	1.1	18
8	VEGFâ€A inhibits agonistâ€mediated Ca ²⁺ responses and activation of IK _{Ca} channels in mouse resistance artery endothelial cells. Journal of Physiology, 2018, 596, 3553-3566.	1.3	6
9	Enhancing endothelial cell signaling in resistance arteries to reverse vasospasm. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-3-57.	0.0	O
10	Hyperglycaemia disrupts conducted vasodilation in the resistance vasculature of db/db mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-3-23.	0.0	O
11	Voltage-dependent Ca ²⁺ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles. Science Signaling, 2017, 10, .	1.6	58
12	Vasorelaxation to the Nitroxyl Donor Isopropylamine NONOate in Resistance Arteries Does Not Require Perivascular Calcitonin Gene–Related Peptide. Hypertension, 2017, 70, 587-593.	1.3	7
13	Ca ²⁺ Influx Through Vascular Smooth Muscle Cell Voltageâ€Gated Ca ²⁺ Channels Increases Endothelial Cell Ca ²⁺ to Evoke Vasodilation. FASEB Journal, 2015, 29, 795.4.	0.2	O
14	Endogenous Acetylcholine Detected by Changes in [Ca ²⁺] _i Within Isolated Endothelial Cell Tubes. FASEB Journal, 2015, 29, 793.3.	0.2	0
15	Alphaâ€1 Adrenergic Receptor Subtype Distribution in Small Resistance Arteries from Mouse and Rat. FASEB Journal, 2015, 29, 793.2.	0.2	1
16	Scaffolding Builds to Reduce Blood Pressure. Science Signaling, 2014, 7, pe16.	1.6	8
17	A novel role for spontaneous endothelial cell calcium activity in the vascular myogenic response. FASEB Journal, 2013, 27, 924.3.	0.2	O
18	The nonâ€neuronal cholinergic system: sources of vascular ACh. FASEB Journal, 2013, 27, 878.4.	0.2	0

#	Article	IF	Citations
19	A novel signalling role for NAADP in arterial smooth muscle. FASEB Journal, 2013, 27, 877.5.	0.2	O
20	Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca ²⁺ events, and IK _{Ca} channels, reducing arteriolar tone. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18174-18179.	3.3	169
21	Statins and Selective Inhibition of Rho Kinase Protect Small Conductance Calcium-Activated Potassium Channel Function (KCa2.3) in Cerebral Arteries. PLoS ONE, 2012, 7, e46735.	1.1	16
22	A novel approach for imaging calcium events simultaneously in arteriolar vascular smooth muscle and endothelial cells. FASEB Journal, 2012, 26, 676.6.	0.2	0
23	EDHF: spreading the influence of the endothelium. British Journal of Pharmacology, 2011, 164, 839-852.	2.7	158
24	A Novel Role for HNO in Local and Spreading Vasodilatation in Rat Mesenteric Resistance Arteries. Antioxidants and Redox Signaling, $2011, 14, 1625-1635$.	2.5	29
25	Compromised vascular endothelial cell SK _{Ca} activity: a fundamental aspect of hypertension?. British Journal of Pharmacology, 2010, 160, 833-835.	2.7	20
26	Nitric Oxide Suppresses Cerebral Vasomotion by sGC-Independent Effects on Ryanodine Receptors and Voltage-Gated Calcium Channels. Journal of Vascular Research, 2010, 47, 93-107.	0.6	32
27	Enhanced spontaneous Ca2+ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. Cell Calcium, 2008, 44, 135-146.	1.1	104
28	Modulation of Endothelial Cell K _{Ca} 3.1 Channels During Endothelium-Derived Hyperpolarizing Factor Signaling in Mesenteric Resistance Arteries. Circulation Research, 2008, 102, 1247-1255.	2.0	198
29	Endothelial P2Y1 receptor desensitizes by protein kinase Câ€dependent mechanisms in rat small mesenteric arteries. FASEB Journal, 2008, 22, 636-636.	0.2	O
30	Nitric Oxide does not suppress myogenic tone by activating ryanodine sensitive stores in rat middle cerebral artery. FASEB Journal, 2007, 21, A1168.	0.2	0
31	Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (KCa) and connexins: possible relationship to vasodilator function?. Journal of Anatomy, 2006, 209, 689-698.	0.9	209
32	Lack of synergism between flow and ATP in stimulating increases in vascular endothelial cell [Ca2+]i. FASEB Journal, 2006, 20, A669.	0.2	0
33	Spatial association of K Ca and gap junction connexins in rat mesenteric artery. FASEB Journal, 2006, 20, A275.	0.2	4
34	Rapid Endothelial Cell–Selective Loading of Connexin 40 Antibody Blocks Endothelium-Derived Hyperpolarizing Factor Dilation in Rat Small Mesenteric Arteries. Circulation Research, 2005, 97, 399-407.	2.0	167
35	Possible Role for K + in Endothelium-Derived Hyperpolarizing Factor–Linked Dilatation in Rat Middle Cerebral Artery. Stroke, 2005, 36, 1526-1532.	1.0	51
36	KCa channel blockers reveal hyperpolarization and relaxation to K+ in rat isolated mesenteric artery. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H606-H614.	1.5	27

#	Article	IF	CITATIONS
37	Properties of smooth muscle hyperpolarization and relaxation to K ⁺ in the rat isolated mesenteric artery. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2424-H2429.	1.5	73
38	Involvement of cyclic GMP and potassium channels in relaxation evoked by the nitric oxide donor, diethylamine NONOate, in the rat small isolated mesenteric artery. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 220-225.	1.4	30
39	Relaxation to authentic nitric oxide and SIN-1 in rat isolated mesenteric arteries: variable role for smooth muscle hyperpolarization. British Journal of Pharmacology, 2001, 133, 665-672.	2.7	23
40	Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. British Journal of Pharmacology, 1998, 123, 1351-1358.	2.7	85
41	Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. British Journal of Pharmacology, 1998, 124, 992-1000.	2.7	49
42	Influence of contractile agonists on the mechanism of endotheliumâ€dependent relaxation in rat isolated mesenteric artery. British Journal of Pharmacology, 1996, 119, 191-193.	2.7	53
43	Evidence that potassium channels make a major contribution to SINâ€1â€evoked relaxation of rat isolated mesenteric artery. British Journal of Pharmacology, 1996, 119, 1557-1562.	2.7	45
44	Characterization of muscarinic receptors mediating contractions of circular and longitudinal muscle of human isolated colon. British Journal of Pharmacology, 1995, 115, 1518-1524.	2.7	50
45	Multiple pathways underlying endotheliumâ€dependent relaxation in the rabbit isolated femoral artery. British Journal of Pharmacology, 1995, 115, 31-38.	2.7	54
46	Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends in Pharmacological Sciences, 1995, 16, 23-30.	4.0	432
47	Contribution of both nitric oxide and a change in membrane potential to acetylcholineâ€induced relaxation in the rat small mesenteric artery. British Journal of Pharmacology, 1994, 112, 831-836.	2.7	71
48	Importance of inositol (1,4,5)â€trisphosphate, intracellular Ca ²⁺ release and myofilament Ca ²⁺ sensitization in 5â€hydroxytryptamineâ€evoked contraction of rabbit mesenteric artery. British Journal of Pharmacology, 1994, 111, 525-532.	2.7	21
49	Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery. British Journal of Pharmacology, 1993, 110, 651-656.	2.7	78
50	Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. British Journal of Pharmacology, 1992, 105, 429-435.	2.7	323