
## Robert C Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7587046/publications.pdf Version: 2024-02-01



POREDT C ROOWN

| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The role of catalytic iron in enhancing volumetric sugar productivity during autothermal pyrolysis of woody biomass. Chemical Engineering Journal, 2022, 427, 131882.  | 12.7 | 12        |
| 2  | Biomass pyrolysis devolatilization kinetics of herbaceous and woody feedstocks. Fuel Processing Technology, 2022, 226, 107068.                                         | 7.2  | 14        |
| 3  | The role of biochar in the degradation of sugars during fast pyrolysis of biomass. Journal of<br>Analytical and Applied Pyrolysis, 2022, 161, 105416.                  | 5.5  | 11        |
| 4  | Retention of oxyanions on biochar surface. , 2022, , 233-276.                                                                                                          |      | 1         |
| 5  | Investigating the Impacts of Feedstock Variability on a Carbon-Negative Autothermal Pyrolysis System<br>Using Machine Learning. Frontiers in Climate, 2022, 4, .       | 2.8  | 4         |
| 6  | CFD–DEM modeling of autothermal pyrolysis of corn stover with a coupled particle- and reactor-scale framework. Chemical Engineering Journal, 2022, 446, 136920.        | 12.7 | 14        |
| 7  | Conversion of Phenolic Oil from Biomass Pyrolysis into Phenyl Esters. Energy & Fuels, 2022, 36, 6317-6328.                                                             | 5.1  | 3         |
| 8  | Heterodoxy in Fast Pyrolysis of Biomass. Energy & Fuels, 2021, 35, 987-1010.                                                                                           | 5.1  | 21        |
| 9  | A novel semi-batch autoclave reactor to overcome thermal dwell time in solvent liquefaction experiments. Chemical Engineering Journal, 2021, 417, 128074.              | 12.7 | 4         |
| 10 | Capture and Release of Orthophosphate by Fe-Modified Biochars: Mechanisms and Environmental Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 658-668. | 6.7  | 33        |
| 11 | The Role of Pyrolysis and Gasification in a Carbon Negative Economy. Processes, 2021, 9, 882.                                                                          | 2.8  | 32        |
| 12 | Machine Learning Reduced Order Model for Cost and Emission Assessment of a Pyrolysis System.<br>Energy & Fuels, 2021, 35, 9950-9960.                                   | 5.1  | 12        |
| 13 | Enhancing Biochar as Scaffolding for Slow Release of Nitrogen Fertilizer. ACS Sustainable Chemistry and Engineering, 2021, 9, 8222-8231.                               | 6.7  | 34        |
| 14 | Impacts of Anisotropic Porosity on Heat Transfer and Off-Gassing during Biomass Pyrolysis. Energy<br>& Fuels, 2021, 35, 20131-20141.                                   | 5.1  | 17        |
| 15 | Pretreatments for the continuous production of pyrolytic sugar from lignocellulosic biomass.<br>Chemical Engineering Journal, 2020, 385, 123889.                       | 12.7 | 40        |
| 16 | The effect of moisture on hydrocarbon-based solvent liquefaction of pine, cellulose and lignin.<br>Journal of Analytical and Applied Pyrolysis, 2020, 146, 104758.     | 5.5  | 7         |
| 17 | Non-catalytic oxidative depolymerization of lignin in perfluorodecalin to produce phenolic monomers. Green Chemistry, 2020, 22, 6567-6578.                             | 9.0  | 21        |
| 18 | Process Intensification through Directly Coupled Autothermal Operation of Chemical Reactors.<br>Joule, 2020, 4, 2268-2289.                                             | 24.0 | 25        |

Robert C Brown

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Tetrahydrofuran-based two-step solvent liquefaction process for production of lignocellulosic sugars. Reaction Chemistry and Engineering, 2020, 5, 1694-1707.                                              | 3.7  | 2         |
| 20 | Application of Hydroprocessing, Fermentation, and Anaerobic Digestion in a Carbon-Negative Pyrolysis<br>Refinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 16413-16421.                         | 6.7  | 10        |
| 21 | Oxidation of phenolic compounds during autothermal pyrolysis of lignocellulose. Journal of<br>Analytical and Applied Pyrolysis, 2020, 149, 104853.                                                         | 5.5  | 16        |
| 22 | Oxidation kinetics of biochar from woody and herbaceous biomass. Chemical Engineering Journal, 2020, 401, 126043.                                                                                          | 12.7 | 33        |
| 23 | Biochar as an Additive in Anaerobic Digestion of Municipal Sludge: Biochar Properties and Their<br>Effects on the Digestion Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 6391-6401.    | 6.7  | 45        |
| 24 | Promoting microbial utilization of phenolic substrates from bio-oil. Journal of Industrial<br>Microbiology and Biotechnology, 2019, 46, 1531-1545.                                                         | 3.0  | 18        |
| 25 | Regional technoâ€economic and lifeâ€cycle analysis of the pyrolysisâ€bioenergyâ€biochar platform for<br>carbonâ€negative energy. Biofuels, Bioproducts and Biorefining, 2019, 13, 1428-1438.               | 3.7  | 23        |
| 26 | Visualization of physicochemical phenomena during biomass pyrolysis in an optically accessible reactor. Journal of Analytical and Applied Pyrolysis, 2019, 143, 104667.                                    | 5.5  | 16        |
| 27 | Anaerobic digestion of aqueous phase from pyrolysis of biomass: Reducing toxicity and improving microbial tolerance. Bioresource Technology, 2019, 292, 121976.                                            | 9.6  | 39        |
| 28 | Factors Influencing Cellulosic Sugar Production during Acid-Catalyzed Solvent Liquefaction in 1,4-Dioxane. ACS Sustainable Chemistry and Engineering, 2019, 7, 18076-18084.                                | 6.7  | 13        |
| 29 | Conventional and autothermal pyrolysis of corn stover: Overcoming the processing challenges of high-ash agricultural residues. Journal of Analytical and Applied Pyrolysis, 2019, 143, 104679.             | 5.5  | 44        |
| 30 | Competing reactions limit levoglucosan yield during fast pyrolysis of cellulose. Green Chemistry,<br>2019, 21, 178-186.                                                                                    | 9.0  | 51        |
| 31 | Premethylation of Lignin Hydroxyl Functionality for Improving Storage Stability of Oil from Solvent<br>Liquefaction. Energy & Fuels, 2019, 33, 1248-1255.                                                  | 5.1  | 10        |
| 32 | Transformation of char carbon during bubbling fluidized bed gasification of biomass. Fuel, 2019, 242, 837-845.                                                                                             | 6.4  | 14        |
| 33 | Kinetic understanding of the effect of Na and Mg on pyrolytic behavior of lignin using a distributed activation energy model and density functional theory modeling. Green Chemistry, 2019, 21, 1099-1107. | 9.0  | 33        |
| 34 | Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor. Applied Energy, 2019, 249, 276-285.                                                            | 10.1 | 70        |
| 35 | Comparison of direct and indirect contact heat exchange to improve recovery of bio-oil. Applied Energy, 2019, 251, 113346.                                                                                 | 10.1 | 21        |
| 36 | Production and purification of crystallized levoglucosan from pyrolysis of lignocellulosic biomass.<br>Green Chemistry, 2019, 21, 5980-5989.                                                               | 9.0  | 59        |

3

ROBERT C BROWN

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Comparison of product distribution, content and fermentability of biomass in a hybrid thermochemical/biological processing platform. Biomass and Bioenergy, 2019, 120, 107-116.                                                                    | 5.7  | 15        |
| 38 | Improving Lignin Homogeneity and Functionality via Ethanolysis for Production of Antioxidants. ACS<br>Sustainable Chemistry and Engineering, 2019, 7, 3520-3526.                                                                                   | 6.7  | 37        |
| 39 | Thermochemical wastewater valorization <i>via</i> enhanced microbial toxicity tolerance. Energy and Environmental Science, 2018, 11, 1625-1638.                                                                                                    | 30.8 | 77        |
| 40 | Continuous solvent liquefaction of biomass in a hydrocarbon solvent. Fuel, 2018, 211, 291-300.                                                                                                                                                     | 6.4  | 25        |
| 41 | Separation of sugars and phenolics from the heavy fraction of bio-oil using polymeric resin adsorbents. Separation and Purification Technology, 2018, 194, 170-180.                                                                                | 7.9  | 40        |
| 42 | Solubilized Carbohydrate Production by Acidâ€Catalyzed Depolymerization of Cellulose in Polar<br>Aprotic Solvents. ChemistrySelect, 2018, 3, 4777-4785.                                                                                            | 1.5  | 17        |
| 43 | Optimization of Phenolic Monomer Production from Solvent Liquefaction of Lignin. ACS Sustainable<br>Chemistry and Engineering, 2018, 6, 12675-12683.                                                                                               | 6.7  | 12        |
| 44 | Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation. Green Chemistry, 2017, 19, 1378-1389.                                                                                              | 9.0  | 80        |
| 45 | Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of<br>Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustainable<br>Chemistry and Engineering, 2017, 5, 5183-5190. | 6.7  | 101       |
| 46 | Comparison of Fast Pyrolysis Behavior of Cornstover Lignins Isolated by Different Methods. ACS<br>Sustainable Chemistry and Engineering, 2017, 5, 5657-5661.                                                                                       | 6.7  | 13        |
| 47 | Low temperature aqueous phase hydrogenation of the light oxygenate fraction of bio-oil over supported ruthenium catalysts. Green Chemistry, 2017, 19, 3252-3262.                                                                                   | 9.0  | 22        |
| 48 | The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy. Bioresource Technology, 2017, 241, 959-968.                                   | 9.6  | 88        |
| 49 | Techno-Economic Analysis of the Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries. ACS Sustainable Chemistry and Engineering, 2017, 5, 1528-1537.                                                                         | 6.7  | 45        |
| 50 | The influence of alkali and alkaline earth metals on char and volatile aromatics from fast pyrolysis of lignin. Journal of Analytical and Applied Pyrolysis, 2017, 127, 385-393.                                                                   | 5.5  | 63        |
| 51 | Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1279-1292.                                                      | 3.0  | 16        |
| 52 | Heat and Mass Transfer Effects in a Furnaceâ€Based Micropyrolyzer. Energy Technology, 2017, 5, 189-195.                                                                                                                                            | 3.8  | 53        |
| 53 | Thermal Stability of Fractionated Bio-Oil from Fast Pyrolysis. Energy & Fuels, 2016, 30, 9419-9426.                                                                                                                                                | 5.1  | 14        |
| 54 | Comparative techno-economic analysis of advanced biofuels, biochemicals, and hydrocarbon chemicals via the fast pyrolysis platform. Biofuels, 2016, 7, 57-67.                                                                                      | 2.4  | 57        |

Robert C Brown

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Production of solubilized carbohydrate from cellulose using non-catalytic, supercritical depolymerization in polar aprotic solvents. Green Chemistry, 2016, 18, 1023-1031.                                                       | 9.0  | 45        |
| 56 | Effect of biomass heating time on bio-oil yields in a free fall fast pyrolysis reactor. Fuel, 2016, 166, 361-366.                                                                                                                | 6.4  | 30        |
| 57 | Quantitative Investigation of Free Radicals in Bioâ€Oil and their Potential Role in Condensedâ€Phase<br>Polymerization. ChemSusChem, 2015, 8, 894-900.                                                                           | 6.8  | 56        |
| 58 | Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar<br>Sequestration. Environmental Science & Technology, 2015, 49, 14688-14695.                                                       | 10.0 | 33        |
| 59 | The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation. Applied Energy, 2015, 148, 115-120.                                                      | 10.1 | 186       |
| 60 | Stabilization of bio-oils using low temperature, low pressure hydrogenation. Fuel, 2015, 153, 224-230.                                                                                                                           | 6.4  | 44        |
| 61 | The use of calcium hydroxide pretreatment to overcome agglomeration of technical lignin during fast pyrolysis. Green Chemistry, 2015, 17, 4748-4759.                                                                             | 9.0  | 80        |
| 62 | Detailed characterization of red oak-derived pyrolysis oil: Integrated use of GC, HPLC, IC, GPC and<br>Karl-Fischer. Journal of Analytical and Applied Pyrolysis, 2014, 110, 147-154.                                            | 5.5  | 78        |
| 63 | Pyrolysis mechanisms of methoxy substituted α-O-4 lignin dimeric model compounds and detection of free radicals using electron paramagnetic resonance analysis. Journal of Analytical and Applied Pyrolysis, 2014, 110, 254-263. | 5.5  | 61        |
| 64 | The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor. Fuel, 2014, 124, 49-56.                                                                                           | 6.4  | 60        |
| 65 | Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel, 2014, 128, 170-179.                                                                                                                                       | 6.4  | 199       |
| 66 | The Influence of Alkali and Alkaline Earth Metals and the Role of Acid Pretreatments in Production of<br>Sugars from Switchgrass Based on Solvent Liquefaction. Energy & Fuels, 2014, 28, 1111-1120.                             | 5.1  | 26        |
| 67 | Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass and Bioenergy, 2014, 63, 167-176.                                                                            | 5.7  | 45        |
| 68 | Production of Clean Pyrolytic Sugars for Fermentation. ChemSusChem, 2014, 7, 1662-1668.                                                                                                                                          | 6.8  | 83        |
| 69 | Quantitation of Sugar Content in Pyrolysis Liquids after Acid Hydrolysis Using High-Performance<br>Liquid Chromatography without Neutralization. Journal of Agricultural and Food Chemistry, 2014, 62,<br>8129-8133.             | 5.2  | 30        |
| 70 | Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass. Green<br>Chemistry, 2014, 16, 4144-4155.                                                                                                 | 9.0  | 106       |
| 71 | Hydrogen-Donor-Assisted Solvent Liquefaction of Lignin to Short-Chain Alkylphenols Using a Micro<br>Reactor/Gas Chromatography System. Energy & Fuels, 2014, 28, 6429-6437.                                                      | 5.1  | 67        |
| 72 | Modeling the physiochemistry of levoglucosan during cellulose pyrolysis. Journal of Analytical and<br>Applied Pyrolysis, 2014, 105, 363-368.                                                                                     | 5.5  | 35        |

ROBERT C BROWN

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The effect of pyrolysis temperature on recovery of bio-oil as distinctive stage fractions. Journal of<br>Analytical and Applied Pyrolysis, 2014, 105, 262-268.                             | 5.5 | 79        |
| 74 | Partial oxidative pyrolysis of acid infused red oak using a fluidized bed reactor to produce sugar rich bio-oil. Fuel, 2014, 130, 135-141.                                                 | 6.4 | 33        |
| 75 | Quantification of total phenols in bio-oil using the Folin–Ciocalteu method. Journal of Analytical and Applied Pyrolysis, 2013, 104, 366-371.                                              | 5.5 | 113       |
| 76 | Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel, 2013, 106, 463-469.                                              | 6.4 | 166       |
| 77 | Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresource Technology, 2013, 150, 220-227.                                         | 9.6 | 77        |
| 78 | Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay. Journal of<br>Analytical and Applied Pyrolysis, 2013, 104, 194-201.                             | 5.5 | 72        |
| 79 | Techno-economics of advanced biofuels pathways. RSC Advances, 2013, 3, 5758.                                                                                                               | 3.6 | 33        |
| 80 | A review of cellulosic biofuel commercialâ€scale projects in the United States. Biofuels, Bioproducts and Biorefining, 2013, 7, 235-245.                                                   | 3.7 | 145       |
| 81 | An experimental study of the competing processes of evaporation and polymerization of levoglucosan in cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 2013, 99, 130-136. | 5.5 | 56        |
| 82 | Role of levoglucosan physiochemistry in cellulose pyrolysis. Journal of Analytical and Applied<br>Pyrolysis, 2013, 99, 58-65.                                                              | 5.5 | 73        |
| 83 | Techno-economic analysis of monosaccharide production via fast pyrolysis of lignocellulose.<br>Bioresource Technology, 2013, 127, 358-365.                                                 | 9.6 | 101       |
| 84 | Pyrolytic Sugars from Cellulosic Biomass. ChemSusChem, 2012, 5, 2228-2236.                                                                                                                 | 6.8 | 155       |
| 85 | Secondary reactions of levoglucosan and char in the fast pyrolysis of cellulose. Environmental<br>Progress and Sustainable Energy, 2012, 31, 256-260.                                      | 2.3 | 79        |
| 86 | Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Applied Microbiology and Biotechnology, 2011, 91, 1519-1523.                                                  | 3.6 | 101       |
| 87 | Product Distribution from the Fast Pyrolysis of Hemicellulose. ChemSusChem, 2011, 4, 636-643.                                                                                              | 6.8 | 370       |
| 88 | Understanding the Fast Pyrolysis of Lignin. ChemSusChem, 2011, 4, 1629-1636.                                                                                                               | 6.8 | 399       |
| 89 | Estimating profitability of two biochar production scenarios: slow pyrolysis <i>vs</i> fast pyrolysis.<br>Biofuels, Bioproducts and Biorefining, 2011, 5, 54-68.                           | 3.7 | 230       |
| 90 | Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresource Technology, 2011, 102, 5265-5269.                                                                       | 9.6 | 295       |

ROBERT C BROWN

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 2010, 89, S29-S35.                                               | 6.4 | 395       |
| 92  | Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel, 2010, 89, S11-S19.                                                                                   | 6.4 | 328       |
| 93  | Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 2010, 89, S2-S10.                                                                                         | 6.4 | 579       |
| 94  | Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource Technology, 2010, 101, 4646-4655.                                                                  | 9.6 | 668       |
| 95  | Review of the pyrolysis platform for coproducing bioâ€oil and biochar. Biofuels, Bioproducts and Biorefining, 2009, 3, 547-562.                                                             | 3.7 | 554       |
| 96  | Product distribution from fast pyrolysis of glucose-based carbohydrates. Journal of Analytical and Applied Pyrolysis, 2009, 86, 323-330.                                                    | 5.5 | 400       |
| 97  | Detoxification of Corn Stover and Corn Starch Pyrolysis Liquors by Ligninolytic Enzymes of<br>Phanerochaete chrysosporium. Journal of Agricultural and Food Chemistry, 2005, 53, 2969-2977. | 5.2 | 17        |
| 98  | Enthalpy for Pyrolysis for Several Types of Biomass. Energy & Fuels, 2003, 17, 934-939.                                                                                                     | 5.1 | 190       |
| 99  | Pretreatment Processes to Increase Pyrolytic Yield of Levoglucosan from Herbaceous Feedstocks. ACS<br>Symposium Series, 2001, , 123-132.                                                    | 0.5 | 42        |
| 100 | Global Gas-Phase Oxidation Rates of Select Products from the Fast Pyrolysis of Lignocellulose.<br>Energy & Fuels, 0, , .                                                                    | 5.1 | 4         |