Arjamadutta Sarangi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7586818/publications.pdf

Version: 2024-02-01

430874 395702 1,137 38 18 33 citations h-index g-index papers 38 38 38 1291 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-site calibration of hydrological model and assessment of water balance in a semi-arid river basin of India. Quaternary International, 2021, 571, 136-149.	1.5	21
2	Impact of climate change on the hydrology of a semi-arid river basin of India under hypothetical and projected climate change scenarios. Journal of Water and Climate Change, 2021, 12, 969-996.	2.9	9
3	Assessment and mapping crop evapotranspiration and green and blue water uses by major crops in trans Indo-Gangetic plains. Journal of Soil and Water Conservation, 2021, 20, 290-300.	0.2	O
4	Analysis of Drivers of Trends in Groundwater Levels Under Rice–Wheat Ecosystem in Haryana, India. Natural Resources Research, 2020, 29, 1101-1126.	4.7	25
5	Effect of tillage and irrigation interactions on soil water dynamics, root growth and water use efficiency of wheat in the indo-gangetic plain. Journal of the Indian Society of Soil Science, 2020, 68, 275-286.	0.2	1
6	Effect of Tillage, Residue and Nitrogen Management on Soil Water Dynamics and Water Productivity of Wheat in an Inceptisol. Journal of the Indian Society of Soil Science, 2019, 67, 44.	0.2	8
7	Effect of Puddling and Direct Sowing of Rice on Soil Physical Health and Water Productivity of Rice-Wheat Cropping System under Different Irrigation Regimes. Journal of the Indian Society of Soil Science, 2019, 67, 160.	0.2	O
8	Modelling the Grain Yield of Wheat in Irrigated Saline Environment with Foliar Potassium Fertilization. Agricultural Research, 2018, 7, 321-337.	1.7	3
9	Modelling of Climate-Induced Groundwater Recharge for Assessing Carbon Emission from Groundwater Irrigation. Current Science, 2018, 115, 64.	0.8	1
10	Assessing Water Footprints and Virtual Water Flows in Gomti River Basin of India. Current Science, 2018, 115, 721.	0.8	15
11	Modelling of groundwater recharge potential from irrigated paddy field under changing climate. Paddy and Water Environment, 2017, 15, 413-423.	1.8	14
12	Comparative evaluation of water budgeting parameters under different rice (Oryza sativa L.) cultivation methods. Journal of Applied and Natural Science, 2017, 9, 1373-1380.	0.4	1
13	Managing CO2 emission from groundwater pumping for irrigating major crops in trans indo-gangetic plains of India. Climatic Change, 2016, 136, 265-279.	3.6	17
14	Response of wheat cultivars to foliar potassium fertilization under irrigated saline environment. Journal of Applied and Natural Science, 2016, 8, 429-436.	0.4	4
15	Evaluation of FAOAqua Crop model for wheat under different irrigation regimes. Journal of Applied and Natural Science, 2016, 8, 473-480.	0.4	1
16	Soil suitability analysis for crop planning in kheragarah Tehsil of Agra district, Uttar Pradesh. Journal of the Indian Society of Soil Science, 2016, 64, 311.	0.2	1
17	Technical efficiency of wheat and paddy farms in irrigated saline environment in Haryana State, India: An assessment. African Journal of Agricultural Research Vol Pp, 2015, 10, 637-644.	0.5	1
18	Time series analysis of groundwater levels and projection of future trend. Journal of the Geological Society of India, 2015, 85, 232-242.	1.1	84

#	Article	IF	CITATIONS
19	Prediction of root zone water and nitrogen balance in an irrigated rice field using a simulation model. Paddy and Water Environment, 2015, 13, 281-290.	1.8	46
20	Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agricultural Water Management, 2015, 148, 72-83.	5.6	48
21	Strategies for climate change impacts on irrigated crops in National Capital Region of India. Journal of Applied and Natural Science, 2015, 7, 388-393.	0.4	2
22	EVALUATION OF AQUACROP MODEL IN PREDICTING WHEAT YIELD AND WATER PRODUCTIVITY UNDER IRRIGATED SALINE REGIMES. Irrigation and Drainage, 2014, 63, 474-487.	1.7	36
23	Prediction of maize yield under future water availability scenarios using the AquaCrop model. Journal of Agricultural Science, 2014, 152, 558-574.	1.3	19
24	Hydrologic behaviour of Tapi river catchment using morphometric analysis. Journal of Applied and Natural Science, 2014, 6, 442-450.	0.4	2
25	Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 2012, 110, 55-66.	5.6	185
26	Multiple Water Use Protocols in Integrated Farming System for Enhancing Productivity. Water Resources Management, 2012, 26, 2605-2623.	3.9	15
27	Spatial Variability of Groundwater Depth and Quality Parameters in the National Capital Territory of Delhi. Environmental Management, 2010, 45, 640-650.	2.7	87
28	Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada. Agricultural Water Management, 2010, 97, 596-604.	5.6	73
29	Development of a GIS Interface for Estimation of Runoff from Watersheds. Water Resources Management, 2008, 22, 1221-1239.	3.9	35
30	Hypsometric Integral Estimation Methods and its Relevance on Erosion Status of North-Western Lesser Himalayan Watersheds. Water Resources Management, 2008, 22, 1545-1560.	3.9	126
31	Spatial and temporal variability of sediment and dissolved loads from two alpine watersheds of the Lesser Himalayas. Catena, 2008, 76, 27-35.	5.0	21
32	Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed. Water Resources Management, 2007, 21, 1127-1143.	3.9	20
33	Subsurface drainage performance study using SALTMOD and ANN models. Agricultural Water Management, 2006, 84, 240-248.	5.6	35
34	Effect of land management on runoff and soil losses from two small watersheds in St Lucia. Land Degradation and Development, 2006, 17, 55-72.	3.9	34
35	Prediction of Spatial Variability of Phosphorous Over the St-Esprit Watershed. Water, Air, and Soil Pollution, 2005, 168, 267-288.	2.4	9
36	GEOSTATISTICAL METHODS FOR PREDICTION OF SPATIAL VARIABILITY OF RAINFALL IN A MOUNTAINOUS REGION. Transactions of the American Society of Agricultural Engineers, 2005, 48, 943-954.	0.9	48

#	Article	IF	CITATIONS
37	Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India. Agricultural Water Management, 2005, 78, 195-208.	5.6	74
38	A decision support system for soil and water conservation measures on agricultural watersheds. Land Degradation and Development, 2004, 15, 49-63.	3.9	16