Ville-Veikko Telkki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7586419/publications.pdf

Version: 2024-02-01

80 papers

2,055 citations

257450 24 h-index 302126 39 g-index

86 all docs 86 docs citations

86 times ranked 1743 citing authors

#	Article	IF	CITATIONS
1	Hyperpolarised NMR to aid molecular profiling of electronic cigarette aerosols. RSC Advances, 2022, 12, 1479-1485.	3.6	3
2	Parahydrogenâ€Induced Polarization in Hydrogenation Reactions Mediated by a Metalâ€Free Catalyst. Chemistry - A European Journal, 2022, 28, .	3.3	13
3	Diffusion measurements of hydrocarbons in H-MCM-41 extrudates with pulsed-field gradient nuclear magnetic resonance spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 8269-8278.	2.8	3
4	Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nature Communications, 2022, 13, 1708.	12.8	20
5	Local structures of rare earth phosphate minerals by NMR. Journal of Solid State Chemistry, 2022, 311, 123097.	2.9	2
6	129Xe NMR analysis reveals efficient gas transport between inborn micro-, meso- and macropores in geopolymers. Cement and Concrete Research, 2022, 155, 106779.	11.0	2
7	Sensitive, Efficient and Portable Analysis of Molecular Exchange Processes by Hyperpolarized Ultrafast NMR. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
8	High-purity lignin fractions and nanospheres rich in phenolic hydroxyl and carboxyl groups isolated with alkaline deep eutectic solvent from wheat straw. Bioresource Technology, 2022, 360, 127570.	9.6	15
9	Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chemical Science, 2021, 12, 8311-8319.	7.4	8
10	Curing process and pore structure of metakaolin-based geopolymers: Liquid-state 1H NMR investigation. Cement and Concrete Research, 2021, 143, 106394.	11.0	31
11	High-Resolution Reconstruction for Multidimensional Laplace NMR. Journal of Physical Chemistry Letters, 2021, 12, 5085-5090.	4.6	15
12	Testing 1D and 2D single-sided NMR on Roman age waterlogged woods. Journal of Cultural Heritage, 2021, 50, 95-105.	3.3	12
13	Seaweed-Derived Alginate–Cellulose Nanofiber Aerogel for Insulation Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34899-34909.	8.0	37
14	Ultrafast methods for relaxation and diffusion. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 126-127, 101-120.	7.5	23
15	Evidence of formation of an amorphous magnesium silicate (AMS) phase during alkali activation of (Na-Mg) aluminosilicate glasses. Cement and Concrete Research, 2021, 145, 106464.	11.0	15
16	High strength one-part alkali-activated slag blends designed by particle packing optimization. Construction and Building Materials, 2021, 299, 124004.	7.2	37
17	Ultrafast Laplace NMR to study metal–ligand interactions in reversible polarisation transfer from parahydrogen. Physical Chemistry Chemical Physics, 2021, 23, 16542-16550.	2.8	8
18	Effect of Process Variables on the Solvolysis Depolymerization of Pine Kraft Lignin. Waste and Biomass Valorization, 2020, 11, 3195-3206.	3.4	9

#	Article	IF	Citations
19	Influence of sodium silicate powder silica modulus for mechanical and chemical properties of dry-mix alkali-activated slag mortar. Construction and Building Materials, 2020, 233, 117354.	7.2	73
20	Comparison of Lignin Fractions Isolated from Wheat Straw Using Alkaline and Acidic Deep Eutectic Solvents. Journal of Agricultural and Food Chemistry, 2020, 68, 15074-15084.	5.2	36
21	Accelerating Restricted Diffusion NMR Studies with Time-Resolved and Ultrafast Methods. Analytical Chemistry, 2020, 92, 9948-9955.	6.5	10
22	Effect of natural weathering on water absorption and pore size distribution in thermally modified wood determined by nuclear magnetic resonance. Cellulose, 2020, 27, 4235-4247.	4.9	27
23	Ultrafast diffusion exchange nuclear magnetic resonance. Nature Communications, 2020, 11, 3251.	12.8	27
24	Recycling mica and carbonate-rich mine tailings in alkali-activated composites: A synergy with metakaolin. Minerals Engineering, 2020, 157, 106535.	4.3	26
25	Characterization of the decay process of Scots pine caused by Coniophora puteana using NMR and MRI. Holzforschung, 2020, 74, 1021-1032.	1.9	19
26	Ettringite-based binder from ladle slag and gypsum $\hat{a}\in$ The effect of citric acid on fresh and hardened state properties. Cement and Concrete Research, 2019, 123, 105800.	11.0	38
27	Nonlinear sampling in ultrafast Laplace NMR. Journal of Magnetic Resonance, 2019, 307, 106571.	2.1	11
28	Ultrafast NMR diffusion and relaxation studies. Annual Reports on NMR Spectroscopy, 2019, , 83-119.	1.5	13
29	High-throughput continuous-flow system for SABRE hyperpolarization. Journal of Magnetic Resonance, 2019, 300, 8-17.	2.1	25
30	Determination of pore structures and dynamics of fluids in hydrated cements and natural shales by various 1H and 129Xe NMR methods. Microporous and Mesoporous Materials, 2019, 281, 66-74.	4.4	24
31	Comprehensive NMR Analysis of Pore Structures in Superabsorbing Cellulose Nanofiber Aerogels. Journal of Physical Chemistry C, 2019, 123, 30986-30995.	3.1	19
32	NMR relaxation and modelling study of the dynamics of SF6 and Xe in porous organic cages. Physical Chemistry Chemical Physics, 2019, 21, 24373-24382.	2.8	12
33	Hyperpolarized <scp>L</scp> aplace <scp>NMR</scp> . Magnetic Resonance in Chemistry, 2018, 56, 619-632.	1.9	25
34	Spontaneous ¹⁵ N Nuclear Spin Hyperpolarization in Metal-Free Activation of Parahydrogen by Molecular Tweezers. Journal of Physical Chemistry Letters, 2018, 9, 903-907.	4.6	14
35	Ultrafast Laplace NMR with hyperpolarized xenon gas. Microporous and Mesoporous Materials, 2018, 269, 75-78.	4.4	16
36	Quantifying the adsorption of flowing gas mixtures in porous materials by remote detection NMR. Microporous and Mesoporous Materials, 2018, 269, 148-151.	4.4	3

#	Article	IF	Citations
37	Ladle slag cement $\hat{a}\in$ Characterization of hydration and conversion. Construction and Building Materials, 2018, 193, 128-134.	7.2	36
38	Probing molecular dynamics with hyperpolarized ultrafast Laplace NMR using a low-field, single-sided magnet. Chemical Science, 2018, 9, 6143-6149.	7.4	19
39	Identification of Intracellular and Extracellular Metabolites in Cancer Cells Using ¹³ C Hyperpolarized Ultrafast Laplace NMR. Analytical Chemistry, 2018, 90, 11131-11137.	6.5	28
40	NMR Hyperpolarization Techniques of Gases. Chemistry - A European Journal, 2017, 23, 724-724.	3. 3	1
41	Frontispiece: NMR Hyperpolarization Techniques of Gases. Chemistry - A European Journal, 2017, 23, .	3.3	2
42	Characterization of pore structures of hydrated cements and natural shales by 129 Xe NMR spectroscopy. Microporous and Mesoporous Materials, 2017, 253, 49-54.	4.4	15
43	Inside information on xenon adsorption in porous organic cages by NMR. Chemical Science, 2017, 8, 5721-5727.	7.4	37
44	Structure and dynamics elucidation of ionic liquids using multidimensional Laplace NMR. Chemical Communications, 2017, 53, 11056-11059.	4.1	19
45	Efficient Catalytic Microreactors with Atomicâ€Layerâ€Deposited Platinum Nanoparticles on Oxide Support. Chemistry - A European Journal, 2017, 23, 16835-16842.	3.3	8
46	Ultrafast NMR diffusion measurements exploiting chirp spin echoes. Magnetic Resonance in Chemistry, 2017, 55, 341-347.	1.9	17
47	NMR Hyperpolarization Techniques of Gases. Chemistry - A European Journal, 2017, 23, 725-751.	3.3	140
48	Structure Elucidation of an Yttrium Diethyldithiocarbamato-Phenanthroline Complex by X-ray Crystallography, Solid-State NMR, and ab-initio Quantum Chemical Calculations. European Journal of Inorganic Chemistry, 2016, 2016, 3278-3291.	2.0	7
49	Ultrafast Multidimensional Laplace NMR Using a Singleâ€Sided Magnet. Angewandte Chemie - International Edition, 2016, 55, 5040-5043.	13.8	32
50	Ultrafast Multidimensional Laplace NMR Using a Singleâ€Sided Magnet. Angewandte Chemie, 2016, 128, 5124-5127.	2.0	9
51	DFT calculations in the assignment of solid-state NMR and crystal structure elucidation of a lanthanum(<scp>iii</scp>) complex with dithiocarbamate and phenanthroline. Dalton Transactions, 2016, 45, 19473-19484.	3.3	15
52	Nuclear spin hyperpolarization with ansa-aminoboranes: a metal-free perspective for parahydrogen-induced polarization. Physical Chemistry Chemical Physics, 2016, 18, 27784-27795.	2.8	34
53	Cholesterol under oxidative stress—How lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radical Biology and Medicine, 2015, 84, 30-41.	2.9	57
54	Encapsulation of Xenon by a Self-Assembled Fe ₄ L ₆ Metallosupramolecular Cage. Journal of the American Chemical Society, 2015, 137, 2464-2467.	13.7	89

#	Article	IF	CITATIONS
55	Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung, 2015, 69, 899-907.	1.9	36
56	Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis. Nature Communications, 2015, 6, 8363.	12.8	87
57	Tweezers for Parahydrogen: A Metal-Free Probe of Nonequilibrium Nuclear Spin States of H ₂ Molecules. Journal of the American Chemical Society, 2014, 136, 598-601.	13.7	36
58	Absorption of Water in Thermally Modified Pine Wood As Studied by Nuclear Magnetic Resonance. Journal of Physical Chemistry C, 2014, 118, 2146-2153.	3.1	59
59	Ultrafast Twoâ€Dimensional NMR Relaxometry for Investigating Molecular Processes in Real Time. ChemPhysChem, 2014, 15, 1687-1692.	2.1	39
60	Labâ€onâ€aâ€Chip Reactor Imaging with Unprecedented Chemical Resolution by Hadamardâ€Encoded Remote Detection NMR. Angewandte Chemie - International Edition, 2014, 53, 11289-11293.	13.8	15
61	Constant-pressure simulations of Gay–Berne liquid-crystalline phases in cylindrical nanocavities. Physical Chemistry Chemical Physics, 2013, 15, 14047.	2.8	14
62	Remote detection NMR imaging of gas phase hydrogenation in microfluidic chips. Lab on A Chip, 2013, 13, 1554.	6.0	20
63	Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions. Holzforschung, 2013, 67, 291-300.	1.9	91
64	Velocity distributions in a micromixer measured by NMR imaging. Lab on A Chip, 2012, 12, 1823.	6.0	8
65	Characterization of Microfluidic Gas Reactors Using Remoteâ€Detection MRI and Parahydrogenâ€Induced Polarization. Angewandte Chemie - International Edition, 2012, 51, 8054-8058.	13.8	51
66	Analysis of remote detection travel time curves measured from microfluidic channels. Journal of Magnetic Resonance, 2011, 210, 238-245.	2.1	14
67	Microfluidic Gasâ€Flow Imaging Utilizing Parahydrogenâ€Induced Polarization and Remoteâ€Detection NMR. Angewandte Chemie - International Edition, 2010, 49, 8363-8366.	13.8	60
68	Time-of-flight remote detection MRI of thermally modified wood. Journal of Magnetic Resonance, 2010, 202, 78-84.	2.1	16
69	Effect of Thermal Modification on Wood Cell Structures Observed by Pulsed-Field-Gradient Stimulated-Echo NMR. Journal of Physical Chemistry C, 2010, 114, 18693-18697.	3.1	17
70	Determining the Highly Anisotropic Cell Structures of Pinus sylvestris in Three Orthogonal Directions by PGSTE NMR of Absorbed Water and Methane. Journal of Physical Chemistry B, 2009, 113, 1080-1084.	2.6	18
71	Determination of the structure of wood from the self-diffusion probability densities of a fluid observed by position-exchange NMR spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 1167.	2.8	6
72	Quantifying the Diffusion of a Fluid through Membranes by Double Phase Encoded Remote Detection Magnetic Resonance Imaging. Journal of Physical Chemistry B, 2007, 111, 13929-13936.	2.6	24

#	Article	IF	CITATIONS
73	Xenon porometry: a novel method for the derivation of pore size distributions. Magnetic Resonance Imaging, 2007, 25, 457-460.	1.8	10
74	Influence of diffusion on pore size distributions determined by xenon porometry. Physical Chemistry Chemical Physics, 2006, 8, 2072.	2.8	11
75	Behavior of a Thermotropic Nematic Liquid Crystal Confined to Controlled Pore Glasses as Studied by129Xe NMR Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 21603-21612.	2.6	14
76	Xenon porometry at room temperature. Journal of Chemical Physics, 2006, 124, 034711.	3.0	22
77	Behavior of Acetonitrile Confined to Mesoporous Silica Gels As Studied by129Xe NMR:Â A Novel Method for Determining the Pore Sizes. Journal of Physical Chemistry B, 2005, 109, 757-763.	2.6	30
78	Determination of Pore Sizes and Volumes of Porous Materials by 129Xe NMR of Xenon Gas Dissolved in a Medium. Journal of Physical Chemistry B, 2005, 109, 24343-24351.	2.6	33
79	Relativistic Spinâ^'Orbit Coupling Effects on Secondary Isotope Shifts of 13C Nuclear Shielding in CX2(X) Tj ETQq1	1 0.7843 13.7	14 rgBT /O\ 25
80	Sensitive, Efficient and Portable Analysis of Molecular Exchange Processes by Hyperpolarized Ultrafast NMR. Angewandte Chemie, 0, , .	2.0	1