
Seungmin Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7586358/publications.pdf Version: 2024-02-01

SELINGMIN HWANG

#	Article	IF	CITATIONS
1	Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites. Frontiers in Cellular and Infection Microbiology, 2020, 10, 203.	1.8	21
2	CD300LF Polymorphisms of Inbred Mouse Strains Confer Resistance to Murine Norovirus Infection in a Cell Type-Dependent Manner. Journal of Virology, 2020, 94, .	1.5	3
3	Dynaminâ€related Irgm proteins modulate LPSâ€induced caspaseâ€11 activation and septic shock. EMBO Reports, 2020, 21, e50830.	2.0	41
4	m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nature Communications, 2019, 10, 2782.	5.8	468
5	Autophagy and Noroviruses. Viruses, 2019, 11, 244.	1.5	7
6	<i>Atg5</i> Supports <i>Rickettsia australis</i> Infection in Macrophages <i>In Vitro</i> and <i>In Vivo</i> . Infection and Immunity, 2019, 87, .	1.0	29
7	Demarcation of Viral Shelters Results in Destruction by Membranolytic GTPases: Antiviral Function of Autophagy Proteins and Interferonâ€Inducible GTPases. BioEssays, 2018, 40, e1700231.	1.2	12
8	Autophagy and Inflammation. Annual Review of Immunology, 2018, 36, 73-101.	9.5	263
9	LysMD3 is a type II membrane protein without an role in the response to a range of pathogens. Journal of Biological Chemistry, 2018, 293, 6022-6038.	1.6	11
10	Direct Antiviral Mechanisms of Interferon-Gamma. Immune Network, 2018, 18, e33.	1.6	187
11	Murine Norovirus Infection Induces TH1 Inflammatory Responses to Dietary Antigens. Cell Host and Microbe, 2018, 24, 677-688.e5.	5.1	67
12	Insight Into the Interaction Between RNA Polymerase and VPg for Murine Norovirus Replication. Frontiers in Microbiology, 2018, 9, 1466.	1.5	10
13	Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Current Opinion in Immunology, 2018, 54, 93-101.	2.4	29
14	Nucleotide triphosphatase and RNA chaperone activities of murine norovirus NS3. Journal of General Virology, 2018, 99, 1482-1493.	1.3	8
15	LC3s hire membrane breakers to attack viral shelters. Autophagy, 2017, 13, 2010-2012.	4.3	3
16	Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases. Cell Host and Microbe, 2017, 22, 74-85.e7.	5.1	90
17	<i>Quo vadis?</i> Interferon-inducible GTPases go to their target membranes via the LC3-conjugation system of autophagy. Small GTPases, 2017, 8, 199-207.	0.7	17
18	Targeting by AutophaGy proteins (TAG): Targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy. Autophagy, 2016, 12, 1153-1167.	4.3	68

SEUNGMIN HWANG

#	Article	IF	CITATIONS
19	Clec16a is Critical for Autolysosome Function and Purkinje Cell Survival. Scientific Reports, 2016, 6, 23326.	1.6	31
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
21	Xenophagy: Autophagy in Direct Pathogen Elimination. , 2016, , 135-153.		1
22	Molecular Chaperone Hsp90 Is a Therapeutic Target for Noroviruses. Journal of Virology, 2015, 89, 6352-6363.	1.5	51
23	The <i>Francisella</i> O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cellular Microbiology, 2014, 16, 862-877.	1.1	61
24	Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proceedings of the United States of America, 2014, 111, 9241-9246.	3.3	201
25	Metabolic Dysfunction Drives a Mechanistically Distinct Proinflammatory Phenotype in Adipose Tissue Macrophages. Cell Metabolism, 2014, 20, 614-625.	7.2	605
26	Murine Norovirus: Propagation, Quantification, and Genetic Manipulation. Current Protocols in Microbiology, 2014, 33, 15K.2.1-61.	6.5	75
27	The Parasitophorous Vacuole Membrane of Toxoplasma gondii Is Targeted for Disruption by Ubiquitin-like Conjugation Systems of Autophagy. Immunity, 2014, 40, 924-935.	6.6	179
28	Cytosolic clearance of replication-deficient mutants reveals <i><i>Francisella tularensis</i></i> interactions with the autophagic pathway. Autophagy, 2012, 8, 1342-1356.	4.3	78
29	Essential Cell-Autonomous Role for Interferon (IFN) Regulatory Factor 1 in IFN-γ-Mediated Inhibition of Norovirus Replication in Macrophages. Journal of Virology, 2012, 86, 12655-12664.	1.5	54
30	Selective Subversion of Autophagy Complexes Facilitates Completion of the Brucella Intracellular Cycle. Cell Host and Microbe, 2012, 11, 33-45.	5.1	290
31	Nondegradative Role of Atg5-Atg12/ Atg16L1 Autophagy Protein Complex in Antiviral Activity of Interferon Gamma. Cell Host and Microbe, 2012, 11, 397-409.	5.1	222
32	Autophagy Links Inflammasomes to Atherosclerotic Progression. Cell Metabolism, 2012, 15, 534-544.	7.2	509
33	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
34	Persistent infection of a gammaherpesvirus in the central nervous system. Virology, 2012, 423, 23-29.	1.1	9
35	The Anti-interferon Activity of Conserved Viral dUTPase ORF54 is Essential for an Effective MHV-68 Infection. PLoS Pathogens, 2011, 7, e1002292.	2.1	46
36	Induction of Protective Immunity against Murine Gammaherpesvirus 68 Infection in the Absence of Viral Latency. Journal of Virology, 2010, 84, 2453-2465.	1.5	32

SEUNGMIN HWANG

#	Article	IF	CITATIONS
37	Autophagy evasion in herpesviral latency. Autophagy, 2010, 6, 151-152.	4.3	6
38	Viral Bcl-2-Mediated Evasion of Autophagy Aids Chronic Infection of Î ³ Herpesvirus 68. PLoS Pathogens, 2009, 5, e1000609.	2.1	83
39	High-Resolution Functional Profiling of a Gammaherpesvirus <i>RTA</i> Locus in the Context of the Viral Genome. Journal of Virology, 2009, 83, 1811-1822.	1.5	6
40	TANK-Binding Kinase-1 Plays an Important Role during In Vitro and In Vivo Type I IFN Responses to DNA Virus Infections. Journal of Immunology, 2009, 182, 2248-2257.	0.4	42
41	mRNA Display Design of Fibronectin-based Intrabodies That Detect and Inhibit Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein. Journal of Biological Chemistry, 2009, 284, 17512-17520.	1.6	42
42	Conserved Herpesviral Kinase Promotes Viral Persistence by Inhibiting the IRF-3-Mediated Type I Interferon Response. Cell Host and Microbe, 2009, 5, 166-178.	5.1	133
43	Antibody-fused interferons as an effective approach to enhance target specificity and antiviral efficacy of type I interferons. Cell Research, 2008, 18, 1230-1232.	5.7	3
44	Persistent Gammaherpesvirus Replication and Dynamic Interaction with the Host In Vivo. Journal of Virology, 2008, 82, 12498-12509.	1.5	77
45	A Repetitive Region of Gammaherpesvirus Genomic DNA Is a Ligand for Induction of Type I Interferon. Journal of Virology, 2008, 82, 2208-2217.	1.5	15
46	The ORF49 Protein of Murine Gammaherpesvirus 68 Cooperates with RTA in Regulating Virus Replication. Journal of Virology, 2007, 81, 9870-9877.	1.5	22
47	Î ³ -Herpesvirus Kinase Actively Initiates a DNA Damage Response by Inducing Phosphorylation of H2AX to Foster Viral Replication. Cell Host and Microbe, 2007, 1, 275-286.	5.1	134
48	Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 RTA Reactivates Murine Gammaherpesvirus 68 from Latency. Journal of Virology, 2005, 79, 3217-3222.	1.5	18
49	Identification of viral genes essential for replication of murine Â-herpesvirus 68 using signature-tagged mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3805-3810.	3.3	131
50	Insights into TOR function and rapamycin response: Chemical genomic profiling by using a high-density cell array method. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7215-7220.	3.3	141
51	The DNA Architectural Protein HMGB1 Facilitates RTA-Mediated Viral Gene Expression in Gamma-2 Herpesviruses. Journal of Virology, 2004, 78, 12940-12950.	1.5	38
52	Kaposi's sarcoma-associated herpesvirus K8 protein interacts with hSNF5. Journal of General Virology, 2003, 84, 665-676.	1.3	23
53	Kaposi's Sarcoma-associated Herpesvirus Open Reading Frame 50 Stimulates the Transcriptional Activity of STAT3. Journal of Biological Chemistry, 2002, 277, 6438-6442.	1.6	71
54	The Kaposi's Sarcoma-Associated Herpesvirus K8 Protein Interacts with CREB-Binding Protein (CBP) and Represses CBP-Mediated Transcription. Journal of Virology, 2001, 75, 9509-9516.	1.5	45

#	Article	IF	CITATIONS
55	The Transcriptional Activity of cAMP Response Element-binding Protein-binding Protein Is Modulated by the Latency Associated Nuclear Antigen of Kaposi's Sarcoma-associated Herpesvirus. Journal of Biological Chemistry, 2001, 276, 31016-31022.	1.6	105
56	Kaposi's Sarcoma-Associated Herpesvirus Open Reading Frame 50 Represses p53-Induced Transcriptional Activity and Apoptosis. Journal of Virology, 2001, 75, 6245-6248.	1.5	45
57	CREB-Binding Protein and Histone Deacetylase Regulate the Transcriptional Activity of Kaposi's Sarcoma-Associated Herpesvirus Open Reading Frame 50. Journal of Virology, 2001, 75, 1909-1917.	1.5	148
58	The K-bZIP Protein from Kaposi's Sarcoma-Associated Herpesvirus Interacts with p53 and Represses Its Transcriptional Activity. Journal of Virology, 2000, 74, 11977-11982.	1.5	77
59	Norovirus Infection Induces Inflammatory Responses to Dietary Antigens. SSRN Electronic Journal, 0, ,	0.4	0